Fluorine Modified TAPO-5: Synthesis and Catalytic Performance in Cyclohexanone Ammoximation

Hengjie Li , Pengfei Gao , Xiaolu Xue , Hongxi Zhang , Yongxiang Zhao

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (2) : 247 -253.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (2) : 247 -253. DOI: 10.1007/s40242-018-7296-x
Article

Fluorine Modified TAPO-5: Synthesis and Catalytic Performance in Cyclohexanone Ammoximation

Author information +
History +
PDF

Abstract

A series of fluorine modified TAPO-5 molecular sieves was synthesized by one-pot method using ammo-nium hexafluorotitanate as titanium and fluorine sources. The XPS and DRS UV-Vis results indicated that the exis-tence of F could promote the formation of tetrahedrally coordinated framework Ti and Al, meanwhile, inhibit the formation of anatase TiO2 in TAPO-5 sieves due to the unique role of F in the sol-gel process of metal ions. Further-more, TG, contact angle test, Py-FTIR and 27Al MAS NMR results revealed that fluorine modification increased the surface hydrophobicity and the Lewis acidity of Ti active sites through forming Al xF y units in the neighborhood. All these factors make these fluorine modified TAPO-5 sieves exhibit good catalytic performance in the ammoximation of cyclohexanone.

Keywords

TAPO-5 / Fluorine modification / Hydrophobicity / Lewis acidity / Cyclohexanone ammoximation

Cite this article

Download citation ▾
Hengjie Li, Pengfei Gao, Xiaolu Xue, Hongxi Zhang, Yongxiang Zhao. Fluorine Modified TAPO-5: Synthesis and Catalytic Performance in Cyclohexanone Ammoximation. Chemical Research in Chinese Universities, 2018, 34(2): 247-253 DOI:10.1007/s40242-018-7296-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Taramasso M., Perego G., Notari B. Preparation of Porous Crystal-line Synthetic Material Comprised of Silicon and Titanium Oxides, 1983.

[2]

Notari B. Adv. Catal., 1996, 41: 253.

[3]

Corma A., Camblor M. A., Esteve P., Martínez A., Pérez-Pariente J. J. Catal., 1994, 145: 151.

[4]

Van der Waal J. C., Rigutto M. S., Van Bekkum H. Appl. Catal. A, 1998, 167: 331.

[5]

Xia C. J., Lin M., Zheng A. G., Xiang Y. J., Zhu B., Xu G. T., Shu X. T. J. Catal., 2016, 338: 340.

[6]

Lin M., Xia C. J., Zhu B., Li H., Shu X. T. Chem. Eng. J., 2016, 295: 370.

[7]

Yan S., Zhang S. J., Zhao Y. X., Li X. M., Zhang Y. M., Zhang H., Wang J., Fu J. Q. Chem. J. Chinese Universities, 2016, 37(5): 946.

[8]

Wilson S. T., Look B. M., Messina C. A., Cannon T. R., Flannigan E. M. J. Am. Chem. Soc., 1982, 104: 1146.

[9]

Ulagappan N., Krishnasamy V. J. Chem. Soc. Chem. Commun., 1995, 3: 373.

[10]

Zahedi-Niaki M. H., Joshi P. N., Kaliaguine S. Chem. Commun., 1996, 1: 47.

[11]

Jiao X. L., Chen D. R., Pang W. Q., Yue Y. Mater. Lett., 2001, 51: 236.

[12]

Prakash A. M., Kevan L., Zahedi-Niaki M. H., Kaliaguine S. J. Phys. Chem. B, 1999, 103: 831.

[13]

Zahedi-Niaki M. H., Kapoor M. P., Kaliaguine S. J. Catal., 1998, 177: 231.

[14]

Lee S. O., Raja R., Harris K. D. M., Thomas J. M., Johnson B. F. G., Sankar G. Angew. Chem. Int. Ed., 2003, 42: 1520.

[15]

Alfayate A., Marquez-Alvarez C., Grande-Casas M. S.-, Sanchez M., Pérez-Pariente J. Catal. Today, 2014, 227: 57.

[16]

Endud S., Roslan N., Ramli Z., Lintang H. O. Adv. Mater. Res., 2015, 1109: 360.

[17]

Tuel A. Zeolites, 1995, 15: 228.

[18]

Hsu B. Y., Cheng S., Chen J. M. J. Mol. Catal. A: Chem., 1999, 149: 7.

[19]

Sanchez-Sanchez M., Sankar G., Gomez-Hortiguela L. Micropor. Mesopor. Mater., 2008, 114: 485.

[20]

Camblor M. A., Corma A., Martinez A., Perez-Pariente J. J. Chem. Soc. Chem. Commun., 1992, 8: 589.

[21]

Camblor M. A., Costantini M., Corma A., Gilbert L., Esteve P., Mar-tinez A., Valencia S. Chem. Commun., 1996, 11: 1339.

[22]

Zahedi-Niaki M. H., Zaidi S. M. J., Kaliaguine S. Micropor. Meso-por. Mater., 1999, 32: 251.

[23]

Maurelli S., Chiesa M., Giamello E., Leithall R. M. Chem. Commun., 2012, 48: 8700.

[24]

Fang X. Q., Wang Q., Zheng A. M., Liu Y. M., Wang Y. N., Deng X. J., Wu H. H., Deng F., He M. Y., Wu P. Catal. Sci. Technol., 2012, 2: 2433.

[25]

Yang Y. L., Ding J. H., Wang B. S., Wu J., Zhao C., Gao G. H., Wu P. J. Catal., 2014, 320: 160.

[26]

Zhuo Z. X., Wu L. Z., Wang L., Ding Y. C., Zhang X. Q., Liu Y. M., He M. Y. RSC Adv., 2014, 4: 55685.

[27]

Zhuo Z. X., Wang L., Zhang X. Q., Wu L. Z., Liu Y. M., He M. Y. J. Catal., 2015, 329: 107.

[28]

Egeblad K., Kustova M., Klitgaard S. K., Zhu K., Christensen C. H. Micropor. Mesopor. Mater., 2007, 101: 214.

[29]

Caullet P., Paillaud J. L., Simon-Masseron A., Soulard M., Patarin J. C. R. Chimie., 2005, 8: 245.

[30]

Manjon-Sanz A., Sanchez-Sanchez M., Munoz-Gomez P., Garcia R., Sastre E. Micropor. Mesopor. Mater., 2010, 131: 331.

[31]

Manjon-Sanz A., Sanchez-Sanchez M., Sastre E. Catal. Today, 2012, 179: 102.

[32]

Zahedi-Niaki M. H., Joshi P. N., Kaliaguine S. Stud. Surf. Sci. Catal., 1997, 105: 1013.

[33]

Hasegawa Y., Ayame A. Catal. Today, 2001, 71: 177.

[34]

Alfayate A., Sanchez-Sanchez M., Perez-Pariente J. Micropor. Mesopor. Mater., 2014, 190: 334.

[35]

Zahedi-Niaki M. H., Beland F., Bonneviot L., Kaliaguine S. Stud. Surf. Sci. Catal., 2002, 142: 125.

[36]

Rios S. P. O., Pereira R., Cardoso D. Mater. Res., 2002, 5: 315.

[37]

Youngman R. E., Sen S. J. J. Non-Cryst. Solids, 2004, 349: 10.

[38]

Yu J. C., Yu J., Ho W., Jiang Z., Zhang L. Chem. Mater., 2001, 14: 3808.

[39]

Akolekar D. B., Ryoo R. J. Chem. Soc. Faraday Trans., 1996, 92: 4617.

[40]

Akolekar D. B., Howe R. F. J. Chem. Soc. Faraday Trans., 1997, 93: 3263.

[41]

Barzetti T., Selli E., Moscotti D., Forni L. J. Chem. Soc., Faraday Trans., 1996, 92: 1401.

[42]

Anderson M. W., Klinowski J. J. Chem. Soc., Faraday Trans., 1986, 82: 1449.

AI Summary AI Mindmap
PDF

169

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/