Synthesis of Fluorescent Carbon Quantum Dots from Dried Lemon Peel for Determination of Carmine in Drinks

Anmei Su , Di Wang , Xin Shu , Qingmei Zhong , Yongren Chen , Jiachen Liu , Yilin Wang

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (2) : 164 -168.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (2) : 164 -168. DOI: 10.1007/s40242-018-7286-z
Article

Synthesis of Fluorescent Carbon Quantum Dots from Dried Lemon Peel for Determination of Carmine in Drinks

Author information +
History +
PDF

Abstract

Carbon quantum dots(CQDs) with a quantum yield of 11% were synthesized via a simple, low-cost and green hydrothermal treatment using dried lemon peel as carbon source. The obtained CQDs showed a strong emission at the wavelength of 505 nm with an optimum excitation of 425 nm. Carmine with maximum absorption wavelength at 508 nm could selectively quench the fluorescence of CQDs. Based on this principle, a fluorescence probe was developed for carmine determination. The quenching mechanism of CQDs was elucidated. A linear relationship was found in the carmine concentration range of 0.20—30.00 mg/L with the detection limit(3σ/k) of 0.16 mg/L. Satisfactory results were achieved when the method was applied for the determination of carmine in soft drinks.

Keywords

Carbon quantum dot / Determination / Carmine / Fluorescence quenching

Cite this article

Download citation ▾
Anmei Su, Di Wang, Xin Shu, Qingmei Zhong, Yongren Chen, Jiachen Liu, Yilin Wang. Synthesis of Fluorescent Carbon Quantum Dots from Dried Lemon Peel for Determination of Carmine in Drinks. Chemical Research in Chinese Universities, 2018, 34(2): 164-168 DOI:10.1007/s40242-018-7286-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Heydari R., Hosseini M., Zarabi S. Spectrochim. Acta A, 2015, 150: 786.

[2]

Ma Y., Zhang G., Pan J. J. Agric. Food Chem., 2012, 60: 10867.

[3]

Oka H., Ikai Y., Kawamura N., Yamada M., Inoue H., Ohno T., Inagaki K., Kuno A., Yamamoto N. J. Chromatogr., 1987, 411: 437.

[4]

Lim H. S., Choi J. C., Song S. B., Kim M. Food Chem., 2014, 158: 521.

[5]

Jager A. V., Tonin F. G., Tavares M. F. M. J. Sep. Sci., 2005, 28: 957.

[6]

Arvand M., Saberi M., Ardaki M. S., Mohammadi A. Talanta, 2017, 173: 60.

[7]

Secula M. S., Creţescu I., Petrescu S. Desalination, 2011, 277: 227.

[8]

Wu X., Song Y., Yan X., Zhu C., Ma Y., Du D., Lin Y. Biosens. Bioelectron., 2017, 94: 292.

[9]

Cao X., Ma J., Lin Y., Yao B., Li F., Weng W., Lin X. Spectrochim. Acta A, 2015, 151: 875.

[10]

Zhan Y., Zu H. R., Huang D., Liu Y. L., Hu C. F. Chem. J. Chinese Universities, 2017, 38(9): 1556.

[11]

Cai N., Tan L., Li Y., Xia T., Hu T., Su X. Anal. Chim. Acta, 2017, 965: 96.

[12]

Hu T., Zhang L., Wen W., Zhang X., Wang S. Biosens. Bioelectron., 2016, 77: 451.

[13]

Niu W. J., Li Y., Zhu R. H., Shan D., Fan Y. R., Zhang X. J. Sensors Actuators B: Chem., 2015, 218: 229.

[14]

Zhuo Y., Miao H., Zhong D., Zhu S., Yang X. Mater. Lett., 2015, 139: 197.

[15]

Wang N., Fan H., Sun J., Han Z., Dong J., Ai S. Carbon, 2016, 109: 141.

[16]

Wang J., Li Q., Zhou J., Wang Y., Yu L., Peng H., Zhu J. Opt. Mater., 2017, 72: 15.

[17]

Liu H., Na W., Liu Z., Chen X., Su X. Biosens. Bioelectron., 2017, 92: 229.

[18]

Pan J., Zheng Z., Yang J., Wu Y., Lu F., Chen Y., Gao W. Talanta, 2017, 166: 1.

[19]

Liu P., Zhang C., Liu X., Cui P. Appl. Surf. Sci., 2016, 368: 122.

[20]

Ke J., Li X., Zhao Q., Liu B., Liu S., Wang S. J. Colloid Interface Sci., 2017, 496: 425.

[21]

Li H., He X., Liu Y., Huang H., Lian S., Lee S. T., Kang Z. Carbon, 2011, 49: 605.

[22]

Liang Q., Ma W., Shi Y., Li Z., Yang X. Carbon, 2013, 60: 421.

[23]

Yuan Y., Zhao X., Qiao M., Zhu J., Liu S., Yang J., Hu X. Spectro-chim. Acta A, 2016, 167: 106.

[24]

Grabolle M., Spieles M., Lesnyak V., Gaponik N., Eychmuller A., Genger U. R. Anal. Chem., 2009, 81: 6285.

[25]

Dong Y., Shao J., Chen C., Li H., Wang R., Chi Y., Lin X., Chen G. Carbon, 2012, 50: 4738.

[26]

Khakbaz F., Mahani M. Anal. Biochem., 2017, 523: 32.

[27]

Ju E., Li Z., Du Y., Tao Y., Ren J., Qu X. ACS Nano, 2014, 8: 6014.

[28]

Chen Y., Rosenzweig Z. Anal. Chem., 2002, 74: 5132.

[29]

Hao C., Xu G., Feng Y., Lu L., Sun W., Sun R. Spectrochim. Acta A, 2017, 184: 191.

[30]

Lim H. S., Choi J. C., Song S. B., Kim M. Food Chem., 2014, 158: 521.

[31]

Li Q., Yang J. D., Tan X. P., Zhan Z., Hu X. M., Yang M. H. Lumi-nescence, 2016, 31: 1152.

[32]

Alghamdi A. H., Alshammery H. M., Abdalla M. A. J. Aoac Int., 2009, 92: 1454.

[33]

Yilmaz U. T., Ergun F., Yilmaz H. J. Food Drug Anal., 2014, 22: 329.

AI Summary AI Mindmap
PDF

204

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/