Synthesis and Visible-light Photocatalytic Performance of C-doped Nb2O5 with High Surface Area

Shuang Ding , Runwei Wang , Panpan Zhang , Bonan Kang , Daliang Zhang , Zongtao Zhang , Shilun Qiu

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (2) : 274 -278.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (2) : 274 -278. DOI: 10.1007/s40242-018-7260-9
Article

Synthesis and Visible-light Photocatalytic Performance of C-doped Nb2O5 with High Surface Area

Author information +
History +
PDF

Abstract

C-doped Nb2O5 with abundant mesopores has been successfully synthesized through a facile solvothermal synthetic strategy followed by calcination treatment. The resulting C-doped Nb2O5 displayed the highest BET surface area(345 m2/g) and large mesopore size(ca. 4.2 nm), capable of offering more accessible active sites as well as faster mass transfer for catalysis. Besides, the doping of C(2.21%, molar fraction) at the O sites in Nb2O5 lattice greatly enhanced visible-light response by lowering the band gap, thereby making the material a photocatalyst under visible-light irradiation. Typically, the C-doped Nb2O5 exhibited a high H2 evolution rate of ca. 39.10 μmol·g–1·h–1 and also degraded RhB dye completely after 30 min of visible light exposure, which turned out to be much better than Degussa P25 and pure Nb2O5 catalysts.

Keywords

C-Doped / Highest BET surface area / Degradation RhB / H2 evolution

Cite this article

Download citation ▾
Shuang Ding, Runwei Wang, Panpan Zhang, Bonan Kang, Daliang Zhang, Zongtao Zhang, Shilun Qiu. Synthesis and Visible-light Photocatalytic Performance of C-doped Nb2O5 with High Surface Area. Chemical Research in Chinese Universities, 2018, 34(2): 274-278 DOI:10.1007/s40242-018-7260-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Osterloh F. E. Chem. Mater., 2008, 20(1): 35.

[2]

Ni M., Leung M. K. H., Leung D. Y. C., Sumathy K. Renew Sust. Energ. Rev., 2007, 11(3): 401.

[3]

Zhang J. J., Li L., Hao Y. T., Sun L. L., Zhang X. Y. Chem. J. Chi-nese Universities, 2017, 38(2): 238.

[4]

Chen X. B., Shen S. H., Guo L. J., Mao S. S. Chem. Rev., 2010, 110(11): 6503.

[5]

Kim J., Henao C. A., Johnson T. A., Dedrick D. E., Miller J. E., Ste-chel E. B., Maravelias C. T. Energ. Environ. Sci., 2011, 4(9): 3122.

[6]

Mubeen S., Singh N., Lee J., Stucky G. D., Moskovits M., McFar-land E. W. Nano Lett., 2013, 13(5): 2110.

[7]

Han F., Kambala V. S. R., Srinivasan M., Rajarathnam D., Naidu R. Appl. Catal. A: Gen., 2009, 359(1/2): 25.

[8]

Liu S. H., Sun X. D., Li J. G., Li X. D., Xiu Z. M., Yang H., Xue X. X. Langmuir, 2010, 26(6): 4546.

[9]

Li R., Yu L. M., Yan X. F., Jiang T. Chem. J. Chinese Universities, 2017, 38(2): 267.

[10]

Liang H. O., Bai J., Yu D. D., Zhang Q. Y., Li C. P. Chem. J. Chinese Universities, 2017, 38(6): 947.

[11]

Liang R. Y., Xu D. D., Zha W. Y., Qi J. Z., Huang L. H. Chem. J. Chinese Universities, 2016, 37(11): 1953.

[12]

Sun L. Z., Zhao S. Z., Gao Z. L., Cheng Z. Q. Chem. J. Chinese Universities, 2017, 38(6): 907.

[13]

Fujishima A., Honda K. Nature, 1972, 238(5358): 37.

[14]

Ding Z., And G. Q. L., Greenfield P. F. J. Phys. Chem. B, 2000, 104(19): 4815.

[15]

Khan S. U., Alshahry M., Jr I. W. Science, 2003, 34(2): 2243.

[16]

Wolcott A., Smith W. A., Kuykendall T. R., Zhao Y. P., Zhang J. Z. Adv. Funct. Mater., 2009, 19(12): 1849.

[17]

Yang X. Y., Wolcott A., Wang G. M., Sobo A., Fitzmorris R. C., Qian F., Zhang J. Z., Li Y. Nano Lett., 2009, 9(6): 2331.

[18]

Chakrabarti S., Dutta B. K. J. Hazard. Mater., 2004, 112(3): 269.

[19]

Chen X. Y., Yu T., Fan X. X., Zhang H. T., Li Z. S., Ye J. H., Zou Z. G. Appl. Surf. Sci., 2007, 253(20): 8500.

[20]

Ge S., Jia H., Zhao H., Zheng Z., Zhang L. J. Mater. Chem., 2010, 20(15): 3052.

[21]

Gu D. E., Lu Y., Yang B. C., Hu Y. D. Chem. Commun., 2008, 21: 2453.

[22]

Sathish M., Viswanathan B., Viswanath R. P., Gopinath C. S. Chem. Mater., 2005, 17(25): 6349.

[23]

Silva M. K., Marques R. G., Machado N. R. C. F., Santos O. A. A. Braz. J. Chem. Eng., 2002, 19(4): 359.

[24]

Suzuki N., Athar T., Huang Y. T., Shimasaki K., Miyamoto N., Ya-mauchi Y. J. Ceram. Soc. Jpn., 2011, 119(1390): 405.

[25]

Zhao Y., Eley C., Hu J. P., Foord J. S., Ye L., He H. Y., Tsang S. C. E. Angew. Chem. Int. Ed., 2012, 51(16): 3846.

[26]

Wang X., Chen G., Zhou C., Yu Y. G., Wang G. Eur. J. Inorg. Chem., 2012, 11: 1742.

[27]

Vettraino M., He X., Trudeau M., Drake J. E., Antonelli D. M. Adv. Funct. Mater., 2010, 12(3): 174.

[28]

Fontaine R., Caillat R., Feve L., Guittet M. J. J. Electron. Spectrosc. Relat. Phenom., 1977, 10(4): 349.

[29]

Dr S. S., Dr H. K. Angew. Chem., 2003, 42(40): 4908.

[30]

Nedfors N., Tengstrand O., Lewin E., Furlan A., Eklund P., Hultman L., Jansson U. Surf. Coat. Tech., 2011, 206(2/3): 354.

[31]

Li Y., Hwang D. S., Lee N. H., Kim S. J. Chem. Phys. Lett., 2005, 404(1): 25.

[32]

Ren W. J., Ai Z. H., Jia F. L., Zhang L. Z., Fan X. X., Zou Z. G. Appl. Catal. B: Environ., 2007, 69(3/4): 138.

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/