Synthesis and characterization of [Cu(N-MeIm)4(BF4)2] in ionic liquid

Jingyang Wang , Meng Zhang , Xiaodong Xu , Jing Feng , Yanli Wang , Milin Zhang , Wei Han , Yitung Chen , Guoxin Tian

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (1) : 8 -12.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (1) : 8 -12. DOI: 10.1007/s40242-018-7259-2
Article

Synthesis and characterization of [Cu(N-MeIm)4(BF4)2] in ionic liquid

Author information +
History +
PDF

Abstract

A new transition metal complex, [Cu(N-MeIm)4(BF4)2](N-MeIm=N-methylated imidazoles, BF4= tetrafluoroborate), was synthesized via the solvothermal method in ionic liquid. The ionic liquid acts as thermal decomposition reaction medium, soft temple agent and ligand compound. The central Cu(II) ion is coordinated by four N atoms from four N-methylated imidazole ligands, and the four N-methylated imidazole rings are perpendicular to each other. The crystal structure of [Cu(N-MeIm)4(BF4)2] was determined by single crystal X-ray diffraction. The results of thermogravimetry(TG) and Fourier transform infrared spectrometry(FTIR) analyses were in accordance with that of crystal structure. The complex showed strong ligand-based absorbance with maximum wavelength at 208 and 231 nm, which are attributed to π-π* transition of the N-methylated imidazole ligands.

Keywords

Transition metal complex / Ionic liquid / Solvothermal method / Crystal structure / 1-Butyl-3-methylimidazolium tetrafluoroborate

Cite this article

Download citation ▾
Jingyang Wang, Meng Zhang, Xiaodong Xu, Jing Feng, Yanli Wang, Milin Zhang, Wei Han, Yitung Chen, Guoxin Tian. Synthesis and characterization of [Cu(N-MeIm)4(BF4)2] in ionic liquid. Chemical Research in Chinese Universities, 2018, 34(1): 8-12 DOI:10.1007/s40242-018-7259-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang Y., Shi Q., Shi Q. Z., Gao Y. C., Zhou Z. Y. Chem. Res. Chinese Universities, 1999, 15(3): 243.

[2]

Wang J. M., Wang Y., Zhu Z. S., Zhang M. C., Zou Y., Li J. J., Li M. J., Jiang X. J., Li X. Y. Sens. Actuators, 2017, 243: 696.

[3]

Hans B., Karl M. E., Frederick G., Björn D., Karell M. G., Göran B., Henrik K. Mar. Pollut. Bull., 2009, 58(2): 230.

[4]

Marija B. P., Milan B. R., Žaklina Z. T., Milan M. A. J. Mol. Liq., 2017, 225: 127.

[5]

Markus A. T., Anders M., Magnus N. Vib. Spectrosc., 2012, 61: 38.

[6]

Jian F. F., Wang Z. X., Bai Z. P., You X. Z., Fun H., Kandasamy C. J. Chem. Crystallogr., 1999, 29: 3.

[7]

Mcfadden D. L., Mcphail A. T., Garner C. D., Mabbs F. E. J. Chem. Soc. Dalton, 1975, 6(15): 263.

[8]

Wu W., Xuan Y. W., Hou Y. M., Liu J., Xie J. M. J. Synthetic. Cryst., 2008, 37(6): 1396.

[9]

Wim V., Paul J. M. W. L. B., Richard W. M. T. H., Gerrit C. V., Jan R. J. Chem. Soc. Dalton, 1984, 3(3): 429.

[10]

Dennis L. M., Andrew T. M., David G., Frank E. M. Chem. Inform., 1976, 7(12): 47.

[11]

Prout C. K., Allison G. B., Rossotti F. J. C. J. Chem. Soc., 1971, 21: 3331.

[12]

Antolini L., Menabue L., Saladini M., Battaglia L. P., Corradi A. B. J. Crystallogr. Spektr. Res., 1987, 17: 365.

[13]

Glowiak T., Wnek I. Act. Crystcrllogr., 1985, 41: 507.

[14]

Su C. C., Wang T. T., Wang Y. P., Wang S. L., Liao F. T. Transition Met. Chem., 1992, 17: 91.

[15]

Cheng S. C., Yin H. K., Jan H. C., Lin W. S., Ling L. F. Polyhedron, 1995, 14(20): 3011.

[16]

Markus A., Jesper H., Patrik J., Jonas N., Magnus N. J. Phys. Chem. A, 2010, 114: 13146.

[17]

Christian N., Mario W., Inke J. Acta Crystallogr., 2010, 58(3): 107.

[18]

Çetinkaya F., Kürkçüoğlu G. S., Yeşilel O. Z., Hökelek T., Dal H. Polyhedron, 2012, 47: 126.

[19]

Kürkçüoğlu G. S., Yeşilel O. Z., Kavlak, Büyükgüngör O. J. Inorg. Organomet. Polym., 2009, 19: 539.

[20]

Corradi A. B., Bruni S., Cariati F., Battaglia L. P., Pelosi G. Inorg. Chim. Acta, 1993, 205(1): 99.

[21]

Antolini L., Battaglia L. P., Corradi A. B., Marcotrigiano G., Mena-bue L., Pellacani G. C., Saladini M. Inorg. Chem., 1982, 21: 1391.

[22]

Chen S., John F. R., Robert M. B. Inorg. Chem., 1994, 33: 2376.

[23]

Liu Y., Zhang Y. M., Hua M. T., Liu M. X., Wei T. B. Chinese J. Inorg. Chem., 2011, 27(8): 1569.

[24]

Shi H. Z., Shan Y. K., He M. Y., Liu Y. Y. J. Solid State Chem., 2003, 176(1): 33.

[25]

Xu X. D., Zhang M., Feng J., Zhang M. L. Mater. Lett., 2008, 62: 2787.

[26]

Lin L., Li Z. F., Wang B. L., Li G., Wang L. P., Meng X. R., He Z. H. Cryst. Growth Des., 2009, 9(12): 1358.

[27]

Huang L., Chen B. D. Acta Cryst., 2006, 62: 3532.

[28]

Zhang Y. M., Liu Y., Lin Q., Hua M. T., Wang W. F. Sci. China Ser. C, 2011, 5: 869.

[29]

Zhang M., Tu X. N., Wang J. Y., Fang T., Zhang Y. L., Xu X. D., Zhang M. L., Chen Y. T. Chem. Res. Chinese Universities, 2016, 32(4): 530.

[30]

Huddleston J. G., Willauer H. D., Swatloski R. P., Visser A. E., Rogers R. D. Chem. Commun., 1998, 16: 1765.

[31]

Sheldrick G. M. SHELXS-97, Program for Crystal Structure Refinement, 1997, Göttingen: University of Göttingen.

[32]

Dong K., Zhang S. J., Wang D. X., Yao X. Q. J. Phys. Chem. A, 2006, 110: 9775.

[33]

Yong Z., Jan H. S., Markus A. Nano Lett., 2004, 4(3): 477.

[34]

Timothy G. F., Ernest E. B., Karsten K. J., Harvey J. S. J. Am. Chem. Soc., 1980, 102(8): 2598.

[35]

Ernest B., Willim F. S., Joseph L. H., Karsten K. J., Harvey J. S. J. Am. Chem. Soc., 1981, 103(7): 1686.

[36]

Ernest B., Parimal K. B., Karsten K. J., Joseph A. P., Harvey J. S. J. Am. Chem. Soc., 1983, 105(12): 386.

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/