High-selectivity Detection of 2,4,6-Trinitrophenol Based on Fluorescent Mg-MOF-74 in Ethanol Solution

Liangliang Zhang , Xuelian Xin , Yukun Lu , Daofeng Sun

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (2) : 175 -179.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (2) : 175 -179. DOI: 10.1007/s40242-018-7248-5
Article

High-selectivity Detection of 2,4,6-Trinitrophenol Based on Fluorescent Mg-MOF-74 in Ethanol Solution

Author information +
History +
PDF

Abstract

Mg-MOF-74 has adsorption capacity while less research is about its luminescent properties. In this work, the fluorescent properties of Mg-MOF-74 were studied and characterized. The results show that Mg-MOF-74 exhibits excellent fluorescent properties and, most strikingly, selective sensing detection for nitroaromatic compounds(NACs), 2,4,6-trinitrophenol(PA) in particular, making it a promising PA-selective luminescent probe. This work demonstrates the application of MOFs in the detection of NACs with good selectivity.

Keywords

Nitroaromatic compound detection / 2,4,6-Trinitrophenol detection / Fluorescent sensor / Mg-MOF-74

Cite this article

Download citation ▾
Liangliang Zhang, Xuelian Xin, Yukun Lu, Daofeng Sun. High-selectivity Detection of 2,4,6-Trinitrophenol Based on Fluorescent Mg-MOF-74 in Ethanol Solution. Chemical Research in Chinese Universities, 2018, 34(2): 175-179 DOI:10.1007/s40242-018-7248-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang L. L., Kang Z. X., Xin X. L., Sun D. F. Cryst. Eng. Comm., 2016, 18: 193.

[2]

Zhang S. R., Du D. Y., Qin J. S., Bao S. J., Li S. L., He W. W., Lan Y. Q., Shen P., Su Z. M. Chem. Eur. J., 2014, 20: 3589.

[3]

Wang X. Q., Zhang L. L., Yang J., Liu F. L., Dai F. N., Wang R. M., Sun D. F. J. Mater. Chem. A, 2015, 3: 12777.

[4]

Germain M. E., Knapp M. J. Chem. Soc. Rev., 2009, 38: 2543.

[5]

Banerjee D., Hu Z. C., Li J. Dalton Trans., 2014, 43: 10668.

[6]

Gong Y. N., Huang Y. L., Jiang L., Lu T. B. Inorg. Chem., 2014, 53: 9457.

[7]

Wang W., Yang J., Wang R. M., Zhang L. L., Yu J. F., Sun D. F. Cryst. Growth. Des., 2015, 15: 2589.

[8]

Sun W., Wang J. Z., Liu H. T., Chang S. Y., Qin X. T., Liu Z. L. Mater. Lett., 2014, 126: 189.

[9]

Shanmugaraju S., Mukherjee P. S. Chem. Eur. J., 2015, 21: 6656.

[10]

Liu G. L., Qin Y. J., Jing L., Wei G. Y., Li H. Chem. Commun., 2013, 49: 1699.

[11]

Hu X. L., Liu F. H., Qin C., Shao K. Z., Su Z. M. Dalton Trans., 2015, 44: 7822.

[12]

Yan Z. H., Li X. Y., Liu L. W., Yu S. Q., Wang X. P., Sun D. Inorg. Chem., 2016, 55: 1096.

[13]

Horcajada P., Gref R., Baati T., Allan P. K., Maurin G., Couvreur P. Fé|rey G., Morris R. E., Serre C., Chem. Rev., 2012, 112: 1232.

[14]

Liu F. L., Kozlevcar B., Strauch P., Zhuang G. L., Guo L. Y., Wang Z., Sun D. Chem. Eur. J., 2015, 21: 18847.

[15]

Lin V. S., Chen W., Xian M., Chang C. J. Chem. Soc. Rev., 2015, 44: 4596.

[16]

Sumida K., Rogow D. L., Mason J. A., McDonald T. M., Bloch E. D., Herm Z. R., Bae T. H., Long J. R. Chem. Rev., 2012, 112: 724.

[17]

Wang G. M., Xue Z. Z., Pan J., Wei L., Han S. D., Qian J. J., Wang Z. H. Cryst. Eng. Comm., 2016, 18: 8362.

[18]

Wang Z., Li X. Y., Liu L. W., Yu S. Q., Feng Z. Y., Tung C. H., Sun D. Chem. Eur. J., 2016, 22: 6830.

[19]

Tranchemontagne D. J., Hunt J. R., Yaghi O. M. Tetrahedron, 2008, 64: 8553.

[20]

Liu F. L., Xu Y. W., Zhao L. M., Zhang L. L., Guo W. Y., Wang R. M., Sun D. F. J. Mater. Chem. A, 2015, 3: 21545.

[21]

Lan A. J., Li K., Wu H. H., Olson D. H., Emge T. J., Ki W., Hong M. C., Li J. Angew. Chem. Int. Ed., 2009, 48: 2334.

[22]

Dietzel P. D. C., Blom R., Fjellvåg H. Eur. J. Inorg. Chem., 2008, 3624.

[23]

Yang D. A., Cho H. Y., Kim J., Yang S. T., Ahn W. S. Energ. Environ. Sci., 2012, 5: 6465.

[24]

Singha D. K., Majee P., Mondal S. K., Mahata P. Eur. J. Inorg. Chem., 2015, 1390.

[25]

Wang G. M., Li J. H., Pan J., Xue Z. Z., Wei L., Han S. D., Bao Z. Z., Wang Z. H. Dalton Trans., 2017, 46: 808.

AI Summary AI Mindmap
PDF

100

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/