Design of Cr2O3@ZnO Hetero-junction Hierarchical Nanostructures with Enhanced Xylene-sensing Properties

Qixuan Qin , Zheng Shen , Nan Zhang , Xindong Zhang

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (2) : 169 -174.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (2) : 169 -174. DOI: 10.1007/s40242-018-7237-8
Article

Design of Cr2O3@ZnO Hetero-junction Hierarchical Nanostructures with Enhanced Xylene-sensing Properties

Author information +
History +
PDF

Abstract

Cr2O3@ZnO hetero-junction hierarchical nanostructures were designed to be enhanced xylene sensing material, and thereinto, flower-like ZnO hierarchical nanostructures were synthesized via a solution-based method, and then Cr2O3 particles were developed on the surface of ZnO petals via a solvothermal method. From the results of XRD patterns, SEM and TEM images, it can be observed that ZnO has a high-quallity crystallinity and Cr2O3 particles scatter uniformly on the suruface of ZnO. The products with different ratios of Cr2O3 were used to fabricate gas sensors, and the result indicates that the hetero-junction structures prompt the response to xylene, and the reason may be attributed to the decrease of main carriers concentration caused by the p-n junction between ZnO(n-type semiconductor) and Cr2O3(p-type semiconductor), as well as the catalytic oxidation effect on methyl groups of the xylene by Cr2O3.

Keywords

ZnO / Hetero-junction / Xylene

Cite this article

Download citation ▾
Qixuan Qin, Zheng Shen, Nan Zhang, Xindong Zhang. Design of Cr2O3@ZnO Hetero-junction Hierarchical Nanostructures with Enhanced Xylene-sensing Properties. Chemical Research in Chinese Universities, 2018, 34(2): 169-174 DOI:10.1007/s40242-018-7237-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Qu F., Feng C., Li C., Li W., Wen S., Ruan S., Zhang H. IJACT, 2014, 11: 619.

[2]

Lin Y., Wei W., Li Y., Li F., Zhou J., Sun D., Chen Y., Ruan S. J. Alloys Comp., 2015, 651: 690.

[3]

Liu J., Guo W., Qu F., Feng C., Li C., Zhu L., Zhou J., Ruan S., Chen W. Ceramics International, 2014, 40: 6685.

[4]

Wang S., Wang Y., Zhang H., Gao X., Yang J., Wang Y. RSC Adv., 2014, 4: 30840.

[5]

Li F., Li Y., Jing F., Zhou J., Chen Y., Sun D., Ruan S. RSC Adv., 2015, 5: 85598.

[6]

Zhao C., Fu J., Zhang Z., Xie E. RSC Adv., 2013, 3: 4018.

[7]

Deng S., Liu X., Chen N., Deng D., Xiao X., Wang Y. Sens. Actua-tors B: Chem., 2016, 233: 615.

[8]

Lee J. H. Sens. Actuators B: Chem., 2009, 140: 319.

[9]

Feng J. J., Liao Q. C., Wang A. J., Chen J. R. Cryst. Eng. Comm., 2011, 13: 4202.

[10]

Bhirud A., Sathaye S., Waichal R., Park C. J., Kale B. J. Mater. Chem. A, 2015, 3: 17050.

[11]

Wu D., Gao Z., Xu F., Shi Z., Tao W., Jiang K. Cryst. Eng. Comm., 2012, 14: 7934.

[12]

Liang Z., Zhang Q., Jiang L., Cao G. Energy Environ. Sci., 2015, 8: 3442.

[13]

Maiti S., Pal S., Chattopadhyay K. K. Cryst. Eng. Comm., 2015, 17: 9264.

[14]

Zhu L., Gu X., Qu F., Zhang J., Feng C., Zhou J., Ruan S., Kang B., Gou P. J. Am. Chem. Soc., 2013, 96(10): 3183.

[15]

Li C., Lin Y., Li F., Zhu L., Sun D., Shen L., Chen Y., Ruan S. RSC Adv., 2015, 5: 80561.

[16]

Tian S., Zhang Y., Zeng D., Wang H., Li N., Xie C., Pan C., Zhao X. Phys. Chem. Chem. Phys., 2015, 17: 27437.

[17]

Woo H. S., Kwak C. H., Chung J. H., Lee J. H. ACS Applied Mate-rials & Interfaces, 2014, 6: 22553.

[18]

Wang F., Li W., Hou M., Li C., Wang Y., Xia Y. J. Mater. Chem. A, 2015, 3: 1703.

[19]

Hao W., Chen S., Cai Y., Zhang L., Li Z., Zhang S. J. Mater. Chem. A, 2014, 2: 13801.

[20]

Hu Z., Xu M., Shen Z., Yu J. J. Mater. Chem. A, 2015, 3: 14046.

[21]

Amrute A. P., Mondelli C., Pérez-Ramírez J. Catalysis Science & Technology, 2012, 2: 2057.

[22]

Ye X., Hua W., Yue Y., Dai W., Miao C., Xie Z., Gao Z. New Journal of Chemistry, 2004, 28: 373.

[23]

Tamiolakis I., Lykakis I. N., Katsoulidis A. P., Malliakas C. D., Armatas G. S. J. Mater. Chem., 2012, 22: 6919.

[24]

Wang S., Li Z., Wang P., Xiao C., Zhao R., Xiao B., Yang T., Zhang M. Cryst. Eng. Comm., 2014, 16: 5716.

[25]

Qu F., Wang Y., Liu J., Wen S., Chen Y., Ruan S. Materials Letters, 2014, 132: 167.

[26]

Kim H. J., Yoon J. W., Choi K. I., Jang H. W., Umar A., Lee J. H. Nanoscale, 2013, 5: 7066.

[27]

Ramasamy P., Kim J. Materials Letters, 2013, 93: 52.

[28]

Cao J., Xu Y., Sui L., Zhang X., Gao S., Cheng X., Zhao H., Huo L. Sens. Actuators B: Chem., 2015, 220: 910.

[29]

Desimoni E. Surface and Interface Analysis, 1988, 13: 173.

[30]

Mischler S., Mathieu H. J., Landolt D. Surface and Interface Analy-sis, 1988, 11: 182.

[31]

Wang Y., Jiang D., Wei W., Zhu L., Shen L., Wen S., Ruan S. RSC Adv., 2015, 5: 50336.

[32]

Lim S. K., Hwang S. H., Chang D., Kim S. Sens. Actuators B: Chem., 2010, 149: 28.

[33]

Li C., Feng C., Qu F., Liu J., Zhu L., Lin Y., Wang Y., Li F., Zhou J., Ruan S. Sens. Actuators B: Chem., 2015, 207: 90.

[34]

Qu F., Jiang H., Yang M. Nanoscale, 2016, 8: 16349.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/