Facile Route to Enzyme Immobilization: Gloucose Oxidase Entrapped in Titania Under Mild Environmental Conditions and Consequent Electrochemical Sensor Response

Zhihui Yu , Dandan Liu , Yunqiao Li

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (3) : 490 -494.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (3) : 490 -494. DOI: 10.1007/s40242-018-7231-1
Article

Facile Route to Enzyme Immobilization: Gloucose Oxidase Entrapped in Titania Under Mild Environmental Conditions and Consequent Electrochemical Sensor Response

Author information +
History +
PDF

Abstract

A facile one-step method of immobilization of the combination of glucose oxidase(GOD) and catalase(CAT) in mesostructured TiO2 was proposed. Results obtained by transmission electron microspectroscopy and nitrogen adsorption-desorption analysis clearly show that the TiO2 mediated by the combination of GOD and CAT(CGC) has a large surface area and a narrow pore-size distribution. The CGC immobilized on mesostructured TiO2 exhibits direct electrochemistry and good electrocatalytic performance without any electron mediator.

Keywords

Direct electrochemistry / Glucose oxidase / Immobilization

Cite this article

Download citation ▾
Zhihui Yu, Dandan Liu, Yunqiao Li. Facile Route to Enzyme Immobilization: Gloucose Oxidase Entrapped in Titania Under Mild Environmental Conditions and Consequent Electrochemical Sensor Response. Chemical Research in Chinese Universities, 2018, 34(3): 490-494 DOI:10.1007/s40242-018-7231-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Huang H P, Yue Y F, Xu L, L L, Hu Y M. Chem. J. Chinese Universities, 2017, 38(4): 554.

[2]

Pan S, Li Z H, Chen Y, Zhao X L, Chen C, Zhu Z G. Chem. J. Chinese Universities, 2017, 38(7): 1163.

[3]

Shan C S, Yang H F, Song J F, Han D X, Ivaska A, Niu L. Anal. Chem., 2009, 81(6): 2378.

[4]

Xu L, Lin Y Q, Chen X, Lu Y L, Yang W S. Chem. J. Chinese Universities, 2016, 37(3): 442.

[5]

Deng S Y, Jian G Q, Lei J P, Hu Z, Ju H X. Biosensors and Bioelectronics, 2009, 25(2): 373.

[6]

Ke B B, Wan L S, Huang X J, Xu Z K. Chem. Res. Chinese Universities, 2011, 27(2): 339.

[7]

Ansari S A, Husain Q. Biotechnol. Adv., 2012, 30(3): 512.

[8]

Sharma R, Sinha R K, Agrawal V V. Electroanal., 2014, 26(7): 1551.

[9]

Lopez R J, Babanova S, Artyushkova K, Atanassov P. Bioelectrochemistry, 2015, 105: 78.

[10]

Karim M R, Ikeda Y, Ide T, Sugimoto S, Toda K, Kitamura Y, Ihara T, Matsui T, Taniguchi T, Koinuma M, Matsumoto Y, Hayami S. New J. Chem., 2014, 38: 2120.

[11]

Cipolatti E P, Silva M J A, Klein M, Feddern V, Feltes M M C, Oliveira J V, Ninow J L, de Oliveira D. J. Mol. Catal. B: Enzym., 2014, 99: 56.

[12]

Hung B Y, Kuthati Y, Kankala R K, Kankala S, Deng J P, Liu C L, Lee C H. Nanomaterials, 2015, 5(4): 2169.

[13]

Nadzhafova O, Etienne M, Walcarius A. Electrochem. Commun., 2007, 9(5): 1189.

[14]

Ha W, Song X Y, Chen J, Shi Y P. Nanoscale, 2015, 7: 18619.

[15]

Ivnitski D, Artyushkova K, Rincón R A, Atanassov P, Luckarift H R, Johnson G R. Small, 2008, 4(3): 357.

[16]

Naik R R, Tomczak M M, Luckarift H R, Spain J C, Stone M O. Chem. Commun., 2004, 1684.

[17]

Yin X B, Wu Y, Mimura H, Niibori Y, Wei Y Z. Sci. China Chem., 2014, 57(11): 1470.

[18]

Topoglidis E, Campbell C J, Cass A E G, Durrant J R. Langmuir, 2001, 17(25): 7899.

[19]

Hartmann M, Kostrov X. Chem. Soc. Rev., 2013, 42: 6277.

[20]

Wang L. L., Qiao J., Qi L., Xu X. Z., Li D. Sci. China Chem., 2015, 58(9): 1508.

[21]

Wang P., Dai S., Waezsada S. D., Tsao A. Y., Davison B. H. Bio-technol. Bioeng., 2001, 74(3): 249.

[22]

Patil B., Fujikawa S., Okajima T., Ohsaka T. Int. J. Electrochem. Sci., 2012, 7: 5012.

[23]

Sheldon R. A. Appl. Microbiol. Biotechnol., 2011, 92(3): 467.

[24]

Wang A. M., Du F. C., Wang F., Shen Y. Q., Gao W. F., Zhang P. F. Biochem. Eng. J., 2013, 73: 86.

[25]

Yang J., Zhang R. Y., Xu Y., He P. G., Fang Y. Z. Electrochem. Commun., 2008, 10(12): 1889.

[26]

Kim J., Jia H. F., Wang P. Biotechnol. Adv., 2006, 24(3): 296.

[27]

Braun S., Rappoport S., Zusman R., Avnir D., Ottolenghi M. Mater. Lett., 1990, 10(1/2): 1.

[28]

Blin J. L., Gérardin C., Carteret C., Rodehueser L., Selve C., Stébé M. J. Chem. Mater., 2005, 17(6): 1479.

[29]

Zhu Y. H., Cao H. M., Tang L. H., Yang X. L., Li C. Z. Electrochi-mica Acta, 2009, 54(10): 2823.

[30]

Xiao P., Garcia B. B., Guo Q., Liu D. W., Cao G. Z. Electrochem. Commun., 2007, 9(9): 2441.

[31]

Bavykin D. V., Milsom E. V., Marken F., Kim D. H., Marsh D. H., Riley D. J., Walsh F. C., El-Abiary K. H., Lapkin A. A. Electrochem. Commun., 2005, 7(10): 1050.

[32]

Cao H. M., Zhu Y. H., Tang L. H., Yang X. L., Li C. Z. Electroanal., 2008, 20(20): 2223.

[33]

Chen G., Li M., Li F., Sun S. R., Xia D. G. Adv. Mater., 2010, 22(11): 1258.

[34]

Venkatathri N., Srivastava R., Yun D. S., Yoo J. W. Microporous Mesoporous Mater., 2008, 112(1―3): 147.

[35]

Antonelli D. M. Microporous Mesoporous Mater., 1999, 30(2/3): 315.

[36]

Ballarin B., Facchini M., Pozzo L. D., Martini C. Electrochem. Commun., 2003, 5(8): 625.

[37]

Vinu A., Miyahara M., Ariga K. J. Phys. Chem. B, 2005, 109(13): 6436.

[38]

Wu S., Ju H. X., Liu Y. Adv. Funct. Mater., 2007, 17(4): 585.

[39]

Laviron E. J. Electroanal. Chem. Interf. Electrochem., 1979, 101(1): 19.

[40]

Cai C. X., Chen J. Anal. Biochem., 2004, 332(1): 75.

[41]

Liu J. Q., Chou A., Rahmat W., Paddon-Row M. N., Gooding J. J. Electroanal., 2005, 17(1): 38.

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/