Electrochemical behaviour of magnesium(II) on Ni electrode in LiCl-KCl eutectic

Shanshan Wang , Wei Han , Milin Zhang , Mei Li , Xiaoguang Yang , Yang Sun

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (1) : 107 -112.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (1) : 107 -112. DOI: 10.1007/s40242-018-7227-x
Article

Electrochemical behaviour of magnesium(II) on Ni electrode in LiCl-KCl eutectic

Author information +
History +
PDF

Abstract

The electrochemical behaviour of magnesium(II) and the formation mechanism of Mg-Ni alloys on Ni electrode were studied in LiCl-KCl eutectic using various electrochemical techniques. Cyclic voltammogram and square-wave voltammogram revealed that under-potential deposition of magnesium occurred on Ni electrode because Mg-Ni alloy compounds were formed. The thermodynamic properties of the Mg-Ni intermetallics, Mg2Ni and MgNi2, were determined using open circuit chronopotentiometry in the temperature range of 818―893 K. Moreover, the Mg-Ni alloys were produced by potentiostatic and galvanostatic electrolysis under different conditions and charac-terized by means of scanning electron microscopy(SEM) equipped with energy dispersive spectrometry(EDS) and X-ray diffraction(XRD). The experimental results indicate that Mg-Ni intermetallic compounds can be selectively produced by potentiostatic electrolysis.

Keywords

Electrochemical behaviour / Mg-Ni alloy / Electrochemical formation / Ni electrode / Molten chloride

Cite this article

Download citation ▾
Shanshan Wang, Wei Han, Milin Zhang, Mei Li, Xiaoguang Yang, Yang Sun. Electrochemical behaviour of magnesium(II) on Ni electrode in LiCl-KCl eutectic. Chemical Research in Chinese Universities, 2018, 34(1): 107-112 DOI:10.1007/s40242-018-7227-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Niu Y. S., Cui R. H., He Y. T., Yu Z. M. J. Alloy. Compd., 2014, 610: 294.

[2]

Trojanová Z., Drozd Z., Lukác P., Chmelik F. Mater. Sci. Eng. A, 2005, 148: 410.

[3]

Sha G. Y., Xu Y. B., Han E. H. Mater. Sci. Forum, 2005, 488/489: 717.

[4]

Han W., Li M., Zhang M. L., Yan Y. D. Rare Metals, 2016, 35(11): 811.

[5]

Reilly J. J., Wiswall R. H. Inorg. Chem., 1968, 7: 2254.

[6]

Ouyang L. Z., Dong H. W., Peng C. H., Sun L. X., Zhu M. Int. J. Hydrogen Energ, 2007, 32: 3929.

[7]

Toshiro K. J. Met. Mater. Int., 2001, 7: 169.

[8]

Selvam P., Viswanathan B. Int. J. Hydrogen Energ., 1986, 11: 169.

[9]

Cui N., Luan B., Liu H. K., Zhao H. J., Dou S. X. J. Power Sources, 1995, 55: 263.

[10]

Cui N., He P., Luo J. L. Acta Mater., 1999, 47: 3737.

[11]

Dornheim M., Doppiu S., Barkhordarian G., Boesenberg U., Klassen T., Gutfleisch O., Bormann R. Scripta Mater., 2007, 56: 841.

[12]

Jurczyk M., Smardz L., Okonska I., Jankowska E., Nowak M., Smardz K. Int. J. Hydrogen Energ., 2008, 33: 374.

[13]

Sakintuna B., Lamari-Darkrim F., Hirscher M. Int. J. Hydrogen Energ., 2007, 32: 1121.

[14]

Reilly J. J., Wiswall R. H. Inorg. Chem., 1968, 7: 2254.

[15]

Wang Z. M., Gu Z. F., Cheng G., Cheng J. Electri. Eng. Alloy, 2003, 3: 39.

[16]

Kamata Y., Kataoka R., Kyoi D., Kamegawa A., Okada M. Mater. Trans., 2008, 49: 457.

[17]

Ma T. J., Hatano Y. J., Abe T., Watanabe K. J. Alloy. Compd., 2005, 391: 313.

[18]

Rangelova V., Spassov T. J. Alloy. Compd., 2002, 345: 148.

[19]

Janot R., Cuevas F., Latroche M., Percheron A. Intermetallics, 2006, 14: 163.

[20]

Simi M. V., Zduji R., Dimitrijevi R. N.-B. L.j., Popovi N. H. J. Power Sources, 2006, 158(1): 730.

[21]

Ji S. J., Sun J. C., Yu Z. W., Hei Z. K., Yan L. Int. J. Hydrogen Energ, 1999, 24: 59.

[22]

Stére T., Haarberg G. M., Rtunold R. J. Appl. Electrochem., 2000, 30: 1351.

[23]

Yan Y. D., Zhang M. L., Han W., Cao D. X., Yuan Y., Xue Y., Chen Z. Electrochim. Acta, 2008, 53: 3323.

[24]

Xue Y., Yan Y. D., Zhang M. L., Han W., Zhang Z. J. J. Rare Earth., 2012, 30: 1048.

[25]

Yan Y. D., Zhang M. L., Xue Y., Han W., Cao D. X., Wei S. Q. Elec-trochim. Acta, 2009, 54: 3387.

[26]

Li X., Yan Y. D., Zhang M. L., Tang H., Ji D. H., Han W., Xue Y., Zhang Z. J. Electrochim. Acta, 2014, 135: 327.

[27]

Li X., Yan Y. D., Zhang M. L., Xue Y., Han W., Tang H., Zhou Z. P., Yang X. N., Zhang Z. J. J. Electrochem. Soc., 2014, 161: 48.

[28]

Tang H., Yan Y. D., Zhang M. L., Xue Y., Zhang Z. J., Du W. C., He H. Acta Phys.-Chim. Sinica, 2013, 29: 1698.

[29]

Tang H., Yan Y. D., Zhang M. L., Li X., Han W., Xue Y., Zhang Z. J., He H. Electrochim. Acta, 2013, 107: 209.

[30]

Li M., Liu Y. C., Han W., Wang S. S., Zhang M. L., Yan Y. D., Shi W. Q. Metall. Mater. Trans. B, 2015, 46: 644.

[31]

Akiyama T., Isogai H., Yagi J. Intermetallics, 2002, 10: 927.

[32]

Pletcher D., Greef R., Peat R., Peter L. M. Potential Sweep Tech-niques and Cyclic Voltammetry, Instrumental Methods in Electro-chemistry, 2002, Southampton: University of Southampton, 180.

[33]

Lukashenko G. M., Eremenko V. N. Izv. Akad. Nauk. SSSR, Met., 1966, 1: 161.

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/