A comparative toxicity study of TiO2 nanoparticles in suspension and adherent culture under the dark condition

Like Chen , Miao Liu , Su Leng , Zhuan Li

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (1) : 44 -50.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (1) : 44 -50. DOI: 10.1007/s40242-018-7193-3
Article

A comparative toxicity study of TiO2 nanoparticles in suspension and adherent culture under the dark condition

Author information +
History +
PDF

Abstract

The present study focused on the different acute toxicity of TiO2 nanoparticles(TiO2 NPs) towards the bacteria in suspension culture and adherent culture under the dark conditions. The study investigated the bacteria toxicity with TiO2 NPs at different concentrations(1—2000 mg/L), sizes(10 nm, 35 nm) and specific surface areas in unit volume solution(0—224 m2/L) characterized by the cell viability, extracellular polymeric substances(EPS) release and biofilm formation. The bacteria in adherent culture was found to be more resistant against the toxicity of TiO2 NPs compared to that in suspension culture. An NP dose and surface area dependent(rather than the size) bacterial viability was observed in suspension culture, specifically the surface area positively correlated with the toxicity of TiO2 NPs. The size of TiO2 NPs, however, played a more critical role in toxicity of TiO2 NPs in adherent culture. Therefore, the surface area dependent toxicity of TiO2 NPs is a comprehensive parameter describing the dose and size dependent toxicity of TiO2 NPs. The electron microscopic(SEM, TEM, EDX) observations suggested the EPS release and biofilm formation, during aggregation of TiO2 NPs on the bacteria after 12 h cultivation in adherent culture under the dark condition. A possible toxic mechanism could be that “effective surface areas” that directly contact with the bacterial membrane greatly contributed to the toxicity of TiO2 NPs in both suspension culture and adherent culture. Therefore, as for the possible resistance mechanism, EPS secretion and subsequent biofilm formation may protect the bacteria against the toxicity of TiO2 NPs.

Keywords

Toxicity of TiO2 NPs / Suspension culture / Adherent culture / Toxic mechanism

Cite this article

Download citation ▾
Like Chen, Miao Liu, Su Leng, Zhuan Li. A comparative toxicity study of TiO2 nanoparticles in suspension and adherent culture under the dark condition. Chemical Research in Chinese Universities, 2018, 34(1): 44-50 DOI:10.1007/s40242-018-7193-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Nowack B., Baalousha M., Bornhöft N., Chaudhry Q., Cornelis G., Cotteril J., Gondikas A., Hasselloev M., Lead J. R., Mitrano D. M. Environmental Science Nano, 2015, 2(5): 421.

[2]

Gottschalk F., Sonderer T., Scholz R. W., Nowack B. Environmental Science & Technology, 2009, 43(24): 9216.

[3]

Ji Z., Jin X., George S., Xia T., Meng H., Wang X., Suarez E., Zhang H., Hoek E. M. V., Godwin H. Environmental Science & Technology, 2010, 44(19): 7309.

[4]

Li Y. Q., Xiao R., Liu Z. L., Liang X. J., Feng W. Chem. Res. Chi-nese Universities, 2017, 33(1): 107.

[5]

Westerhoff P., Song G., Hristovski K., Kiser M. A. Journal of Envi-ronmental Monitoring, 2011, 13(5): 1195.

[6]

Weir A., Westerhoff P., Fabricius L., Hristovski K. v., Goetz N. Environmental Science & Technology, 2012, 46(4): 2242.

[7]

Shih T. T., Lin C. H., Hsu I. H., Chen J. Y., Sun Y. C. Analytical Chemistry, 2013, 85(21): 10091.

[8]

Peters R. J., Van B. G., Herrerarivera Z., Helsper H. P., Marvin H. J., Weigel S., Tromp P. C., Oomen A. G., Rietveld A. G., Bouwmeester H. Journal of Agricultural & Food Chemistry, 2014, 62(27): 6285.

[9]

Cai L. J., Li J. B., Wang S. P., Zhao M. Z., Zhao B., Jiang C. L., Kong W. Chem. Res. Chinese Universities, 2017, 33(2): 294.

[10]

Keller A. A., Lazareva A. Environ. Sci. Technol. Lett., 2013, 1(1): 65.

[11]

Gondikas A. P., Von d K. F., Reed R. B., Wagner S., Ranville J. F., Hofmann T. Environmental Science & Technology, 2014, 48(10): 5415.

[12]

Vale G., Mehennaoui K., Cambier S., Libralato G., Jomini S., Do-mingos R. F. Aquatic Toxicology, 2016, 170(4): 162.

[13]

Djurišic A. B., Leung Y. H., Ng A. M., Xu X. Y., Lee P. K., Degger N., Wu R. S. Small, 2015, 11(1): 26.

[14]

Gottschalk F., Sun T., Nowack B. Environ. Poll., 2013, 181: 287.

[15]

Gu Y., Qiao X., Zhang J., Sun Y. Y., Tao Y. M., Qiao S. X. Chem. Res. Chinese Universities, 2016, 32(3): 474.

[16]

Landsiedel R., Lan M. H., Kroll A., Hahn D., Schnekenburger J., Wiench K., Wohlleben W. Adv. Mater., 2010, 22(24): 2601.

[17]

Farkas J., Peter H., Ciesielski T. M., Thomas K. V., Sommaruga R., Salvenmoser W., Weyhenmeyer G. A., Tranvik L. J., Jenssen B. M. Science of the Total Environment, 2015, 535: 85.

[18]

Toyofuku M., Inaba T., Kiyokawa T., Obana N., Yawata Y., Nomura N. Bioscience Biotechnology & Biochemistry, 2015, 80(1): 1.

[19]

Mathur A., Kumari J., Parashar A., Lavanya T., Chandrasekaran N., Mukherjee A. PLoS One, 2015, 10(10): 329.

[20]

Zhukova L. V. ACS Applied Materials & Interfaces, 2015, 7(49): 27197.

[21]

Sangshetti J. N., Dharmadhikari P. P., Chouthe R. S., Fatema B., Lad V., Karande V., Darandale S. N., Shinde D. B. Cheminform, 2013, 23(7): 2250.

[22]

Josko I., Oleszczuk P., Skwarek E. Journal of Soils and Sediments, 2016, 16(6): 1798.

[23]

George S., Gardner H., Seng E. K., Chang H., Wang C., Fang C. H. Y., Richards M., Valiyaveettil S., Chan W. K. Environmental Science & Technology, 2014, 48(11): 6374.

[24]

Zhu M., Wang H., Keller A. A., Wang T., Li F. Science of the Total Environment, 2014, 487C(14): 375.

[25]

Li D., Cui F., Zhao Z., Liu D., Xu Y., Li H., Yang X. Biodegradation, 2014, 25(2): 167.

[26]

Tong T., Wilke C. M., Wu J., Binh C. T., Kelly J. J., Gaillard J. F., Gray K. A. Environmental Science & Technology, 2015, 49(13): 8113.

[27]

Tong T., Shereef A., Wu J., Binh C. T., Kelly J. J., Gaillard J. F., Gray K. A. Environmental Science & Technology, 2013, 47(21): 12486.

[28]

Raftery T. D., Lindler H., Mcnealy T. L. Microbial Ecology, 2013, 65(2): 496.

[29]

Li Y., Niu J., Zhang W., Zhang L., Shang E. Langmuir, 2014, 30(10): 2852.

[30]

Rodrigues D. F., Elimelech M. Environmental Science & Technology, 2010, 44(12): 4583.

[31]

Helt C. D., Weber K. P., Legge R. L., Slawson R. M. Ecological En-gineering, 2012, 39(7): 113.

[32]

Kumari J., Kumar D., Mathur A., Naseer A., Kumar R. R., Thanjavur C. P., Chaudhuri G., Pulimi M., Raichur A. M., Babu S. Environ-mental Research, 2014, 135: 333.

[33]

Fu P. P., Xia Q., Hwang H. M., Ray P. C., Yu H. Journal of Food & Drug Analysis, 2014, 22(1): 64.

[34]

Osborne O. J., Lin S., Chang C. H., Ji Z., Yu X., Wang X., Lin S., Xia T., Nel A. E. ACS Nano, 2015, 9(10): 9573.

[35]

Xiong S., George S., Yu H., Damoiseaux R., France B., Ng K. W., Loo S. C. Archives of Toxicology, 2013, 87(6): 1075.

[36]

Schug H., Isaacson C. W., Sigg L., Ammann A. A., Schirmer K. En-vironmental Science & Technology, 2014, 48(19): 11620.

[37]

Long T. E., Keding L. C., Lewis D. D., Anstead M. I., Withers T. R., Yu H. D. Bioorganic & Medicinal Chemistry Letters, 2016, 26(4): 1305.

[38]

You G., Hou J., Xu Y., Wang C., Wang P., Miao L., Ao Y., Li Y., Lv B. Bioresource Technology, 2015, 194: 91.

[39]

Miao L., Wang C., Hou J., Wang P., Ao Y., Li Y., Yao Y., Lv B., Yang Y., You G. Science of the Total Environment, 2016, 579: 588.

[40]

Adam V., Loyauxlawniczak S., Quaranta G. Environmental Science and Pollution Research, 2015, 22(15): 11175.

[41]

Dalai S., Pakrashi S., Kumar R. S. S., Chandrasekaran N., Mukherjee A. Toxicol. Res., 2012, 1(2): 116.

[42]

Lipovsky A., Levitski L., Tzitrinovich Z., Gedanken A., Lubart R. Photochemistry & Photobiology, 2012, 88(1): 14.

[43]

Nesic J., Rtimi S., Laub D., Roglic G. M., Pulgarin C., Kiwi J. Col-loids & Surfaces B Biointerfaces, 2014, 123: 593.

[44]

Cho E. J., Holback H., Liu K. C., Abouelmagd S. A., Park J., Yeo Y. Molecular Pharmaceutics, 2013, 10(6): 2093.

AI Summary AI Mindmap
PDF

190

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/