Synthesis, in vitro coagulation activities and molecular docking studies on three L-histidine amide derivatives

Wei He , Anran Zhao , Jiajia Zou , Xuan Luo , Xiao Lin , Lisheng Wang , Cuiwu Lin

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (1) : 90 -94.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (1) : 90 -94. DOI: 10.1007/s40242-018-7184-4
Article

Synthesis, in vitro coagulation activities and molecular docking studies on three L-histidine amide derivatives

Author information +
History +
PDF

Abstract

Three novel L-histidine amide derivatives were synthesized and the corresponding chemical structures were characterized by means of melting point analysis, IR, MS, 1H NMR as well as 13C NMR. The coagulation activities of the compounds were evaluated by an MOE(molecular operating environment) docking technique and coagulation test. The results obtained from molecular docking show that the interactions between the compounds and thrombin exhibit procoagulant activity in combination with an improved combinatory effect. Moreover, the results of in vitro coagulation tests show that the L-histidine amide derivatives feature coagulant activities in common coagulation pathways. Compared with the blank control group, the optimal shortening rates of compounds 1―3 were 39.08%(0.5 mmol/L), 22.94%(1.0 mmol/L) and 15.38%(0.0625 mmol/L), respectively.

Keywords

L-Histidine amide derivative / Molecular docking / Coagulation test

Cite this article

Download citation ▾
Wei He, Anran Zhao, Jiajia Zou, Xuan Luo, Xiao Lin, Lisheng Wang, Cuiwu Lin. Synthesis, in vitro coagulation activities and molecular docking studies on three L-histidine amide derivatives. Chemical Research in Chinese Universities, 2018, 34(1): 90-94 DOI:10.1007/s40242-018-7184-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bunev A. S., Vasiliev M. A., Statsyuk V. E., Ostapenko G. I., Pere-gudov A. S. Journal of Fluorine Chemistry, 2014, 163: 34.

[2]

Xue W. J., Li H. Z., Gao F. F., Wu A. X. Tetrahedron, 2014, 70(2): 239.

[3]

Wei J. R., Liu K., Lin F. Q., He C. P., Luo X., Zou J. J., He W., Nong W. Q., Lin C. W. Applied Biological Chemistry, 2016, 59(2): 271.

[4]

Dong W. B., Mao X. M., Guan Y., Kang Y., Shang D. J. Scientific Reports, 2017, 7: 40228.

[5]

Ramadhan U. H., Al-Salihi N. J. Journal of Chemistry, 2011, 8(4): 1832.

[6]

Garza-Ortiz A., Camacho-Camacho C., Sainz-Espuñes T., Rojas I., Gutiérrez-Lucas L. R., Gutierrez C. A., Vera R., Marco A. Bioinor-ganic Chemistry and Applications, 2013, 13: 502713.

[7]

Luo B., Chen F. Y. Hebei Medicine, 2008, 4: 455.

[8]

Costanzo M. J., Almond H. R., Hecker L. R., Schott M. R., Yabut S. C., Zhang H. C., Andrade-Gordon P., Corcoran T. W., Giardino E. C., Kauffman J. A. Journal of Medicinal Chemistry, 2005, 48(6): 1984.

[9]

Anas A. R. J., Kisugi T., Umezawa T., Matsuda F., Campitelli M. R., Quinn R. J., Okino T. Journal of Natural Products, 2012, 75(9): 1546.

[10]

Dong Z. X., Shi Z. H., Li N. G., Zhang W., Gu T., Zhang P. X., Wu W. Y., Tang Y. P., Fang F., Xue X. Chemical Biology & Drug Design, 2016, 87(6): 946.

[11]

Jasmine F., Gerhard K. Angewandte Chemie International Edition, 2006, 45(6): 985.

[12]

Handley L. D., Treuheit N. A., Venkatesh V. J., Komives E. A. Bio-chemistry, 2015, 54(43): 6650.

[13]

Debbabi K. F., Bashandy M. S., Al-Harbi S. A., Aljuhani E. H., Al-Saidi H. M. Journal of Molecular Structure, 2017, 1131: 124.

[14]

Jiang L. G., Yuan C., Chen H. W., Wang Y., Zhao B. Y., Zhang X., Huang M. D. Chinese J. Struct. Chem., 2011, 30(7): 1021.

[15]

Zaki I., Ramadan M., Abdelrahman M. H., Aly Omar M. Monat-shefte füer Chemie, 2017, 148(8): 1483.

[16]

Kheder N. A. Molecules, 2016, 21(3): 326.

[17]

Subramanian V., Ain Q. U., Henno H. P., Lars O., Fuchs J., Pru-sis P., Bender A., Wohlfahrt G. Med. Chem. Comm., 2017, 8(5): 1037.

[18]

Zhang E., Feng S. Materials Science & Engineering C Materials for Biological Applications, 2015, 52: 37.

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/