Template effect of hydrophobically associating polymers on the construction of cuprous oxide micro structure

Lei Dong , Huan Liu , Yanjuan Li , Hongtao Zhang , Liangmin Yu , Lanni Jia

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (1) : 138 -144.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (1) : 138 -144. DOI: 10.1007/s40242-018-7173-7
Article

Template effect of hydrophobically associating polymers on the construction of cuprous oxide micro structure

Author information +
History +
PDF

Abstract

To determine the template effect of hydrophobically associating copolymers(HACPs) on the morphology of nano/micro structures, six HACPs were synthesized and used as templates to biomimetically synthesize cuprous oxide(Cu2O), an important semiconductor. This experiment showed a clear relationship between the associating state of the HACP molecules and the morphology of the Cu2O particles. Cu2O hollow spheres were preferentially prepared when the HACP molecules were in an intramolecular associating state. Furthermore, a Cu2O hexapod was easily ob-tained when the HACP molecules were in an intermolecular associating state. The morphologies of the Cu2O crystals prepared in the presence of the HACPs also confirmed this result.

Keywords

Template / Hydrophobically associating polymer / Cuprous oxide / Morphology

Cite this article

Download citation ▾
Lei Dong, Huan Liu, Yanjuan Li, Hongtao Zhang, Liangmin Yu, Lanni Jia. Template effect of hydrophobically associating polymers on the construction of cuprous oxide micro structure. Chemical Research in Chinese Universities, 2018, 34(1): 138-144 DOI:10.1007/s40242-018-7173-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mnna S. Nature, 1993, 365(7): 499.

[2]

Weiner S., Addadi L. J. Mater. Chem., 1997, 7(5): 689.

[3]

Annenkov V. V., Danilovtseva E. N., Pal’shin V. A. RSC Adv., 2017, 7: 20995.

[4]

Hartgerink J. D., Beniash E., Stupp S. I. Science, 2001, 294(5547): 1684.

[5]

Zheng Z., Huang B., Ma H. Cryst. Growth Des., 2007, 7(9): 1912.

[6]

Yan B. Q., Nan Z. D., Liu Y. Chinese J. Chem., 2008, 26(12): 2302.

[7]

Finnemore A., Cunha P., Shean T. Nat. Com., 2012, 3: 966.

[8]

Banerjee I., Yu A. L., Matsui H. J. Am. Chem. Soc., 2003, 125(32): 9542.

[9]

Zhang D., Qi L., Ma J., Cheng H. Chem. Mater., 2001, 13(9): 2753.

[10]

Qi L., Colfen H., Antonietti M. Nano Lett., 2001, 1(2): 61.

[11]

Bastakoti B. P., Guragain S., Yokoyama Y. Langmuir, 2011, 27(1): 379.

[12]

Ng C. H. B., Fan W. Y. J. Phys. Chem. B, 2006, 110(42): 20801.

[13]

Du S. S., Cheng P. F., Sun P., Wang B., Cai Y. X. Chem. Res. Chi-nese Universities, 2014, 30(4): 661.

[14]

Poizot P., Laruelle S., Grugeon S., Dupont L., Taracon J. M. Nature, 2000, 407: 496.

[15]

Qiu X. Q., Miyauchi M., Sunada K., Minoshima M. ACS Nano, 2012, 6(2): 1609.

[16]

Chang Y., Teo J. J., Zeng H. C. Langmuir, 2005, 21(3): 1074.

[17]

Xu J. S., Xue D. F. Acta. Mater., 2007, 55: 2397.

[18]

Yu L. M., An Z. G., Dong L. Paint Coat. Ind., 2007, 37(7): 70.

[19]

Jia L. N., Yu L. M., Li R. J. Appl. Polym. Sci., 2013, 130(3): 1794.

[20]

Feng Y. J., Billon L., Grassl B. Polymer, 2002, 43(7): 2055.

[21]

Pu H. T., Jiang W. C., Liu L. Chem. J. Chinese Universities, 2005, 26(9): 1743.

[22]

Gao B. J., Jiang L. D., Liu K. K. Eur. Poly. J., 2007, 43(10): 4530.

[23]

Dobrynin A. V., Rubinstein M. Macromolecules, 1999, 32(3): 915.

[24]

Dobrynin A. V., Rubinstein M. Macromolecules, 2000, 33(21): 8097.

[25]

Zhang L., Eisenberg A. Macromolecules, 1999, 32: 2239.

[26]

Zhang L., Eisenberg A. Polym. Adv. Technol., 1998, 9: 677.

[27]

Jiang L. F., Zhong C. R., Xu M. Acta Phys.-Chim. Sin., 2010, 26(3): 535.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/