Perovskite oxides La0.8Sr0.2Co1‒xFe xO3 for CO oxidation and CO+NO reduction: Effect of redox property and surface morphology

Ke Yu , Tingting Diao , Junjiang Zhu , Zhen Zhao

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (1) : 119 -126.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (1) : 119 -126. DOI: 10.1007/s40242-018-7156-8
Article

Perovskite oxides La0.8Sr0.2Co1‒xFe xO3 for CO oxidation and CO+NO reduction: Effect of redox property and surface morphology

Author information +
History +
PDF

Abstract

This work aims to study the effect of redox property and surface morphology of perovskite oxides on the catalytic activity of CO oxidation and CO+NO reduction, with the redox property being tuned by doping Fe at the Co site of La0.8Sr0.2Co1‒xFe xO3 and the surface morphology being modified by supporting La0.8Sr0.2CoO3 on various me-soporous silicas(i.e., SBA-16, SBA-15, MCF). Characteristic results show that the Fe doping improves the match of redox potentials, and SBA-16 is the best support of La0.8Sr0.2CoO3 when referring to the oxidation ability(e.g., the Co3+/Co2+ molar ratio). A mechanism for oxygen desorption from perovskite oxides is proposed based on O2-TPD experiments, showing the evolution process of oxygen released from oxygen vacancy and lattice framework. Cata-lytic tests indicate that La0.8Sr0.2CoO3 is the best for CO oxidation, and La0.8Sr0.2FeO3 is the best for CO+NO reduc-tion. The mechanism of CO+NO reduction changes as the reaction temperature increases, with X NO/X CO value de-creases from 2.4 at 250 °C to 1.0 at 400 °C. As for the surface morphology, La0.8Sr0.2CoO3 supported on SBA-16 possesses the highest surface Co3+/Co2+ molar ratio as compared to the other two, and shows the best activity for CO oxidation.

Keywords

Perovskite oxide / Redox property / Surface morphology / Mesoporous silica / CO oxidation / CO+NO reduc-tion

Cite this article

Download citation ▾
Ke Yu, Tingting Diao, Junjiang Zhu, Zhen Zhao. Perovskite oxides La0.8Sr0.2Co1‒xFe xO3 for CO oxidation and CO+NO reduction: Effect of redox property and surface morphology. Chemical Research in Chinese Universities, 2018, 34(1): 119-126 DOI:10.1007/s40242-018-7156-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Graham L. A., Belisle S. L., Rieger P. Atmos. Environ., 2009, 43(12): 2031.

[2]

Bergek A., Berggren C., Group K. R. Ecol. Econ., 2014, 106: 112.

[3]

Zhang X., Dong H., Zhao D., Wang Y., Wang Y., Cui L. Chem. Res. Chinese Universities, 2016, 32(3): 455.

[4]

Zhu J., Li H., Zhong L., Xiao P., Xu X., Yang X., Zhao Z., Li J. ACS Catal., 2014, 4: 2917.

[5]

Qian L., Ding L. M. Chem. J. Chinese Universities, 2015, 36(4): 595.

[6]

Chen Y. G., Wang X. H., Han H. J., Wang H. Y., An H. Y., Song H., Gong X. Z., Zhang J. Chem. J. Chinese Universities, 2017, 38(2): 252.

[7]

Zhang Y., Li J., Zhang Z., Liu F., Zhao X., Liu X. Chem. Res. Chi-nese Universities, 2015, 31(5): 699.

[8]

Giannakas A. E., Leontiou A. A., Ladavos A. K., Pomonis P. J. Appl. Catal. A: Gen., 2006, 309(2): 254.

[9]

Khine M. S. S., Chen L., Zhang S., Lin J., Jiang S. P. Int. J. Hydro-gen. Energ., 2013, 38(30): 13300.

[10]

De Lima R. K. C., Batista M. S., Wallau M., Sanches E. A., Masca-renhas Y. P., Urquieta-González E. A. Appl. Catal. B: Environ., 2009, 90(3): 441.

[11]

Kim C. H., Qi G., Dahlberg K., Li W. Science, 2010, 327(5973): 1624.

[12]

Zawadzki M., Trawczyński J. Catal. Today, 2011, 176(1): 449.

[13]

Xiao P., Li H., Wang T., Xu X., Li J., Zhu J. RSC Adv., 2014, 4(24): 12601.

[14]

Lakshminarayanan N., Choi H., Kuhn J. N., Ozkan U. S. Appl. Catal. B:Environ., 2011, 103(3): 318.

[15]

Zhang J., Tan D., Meng Q., Weng X., Wu Z. Appl. Catal. B: Envi-ron., 2015, 172: 18.

[16]

Chen S. X., Wang Y., Jia A. P., Liu H. H., Luo M. F., Lu J. Q. Appl. Surf. Sci., 2014, 307: 178.

[17]

Jung W. Y., Song Y. I., Lim K. T., Lee G. D., Lee M. S., Hong S. S. J. Nanosci. Nanotechnol., 2015, 15(1): 652.

[18]

Liu M., Hu L., Xu P., Zhao K., Zong L., Yu R., Chen J., Xing X. Chem. Res. Chinese Universities, 2015, 31(3): 342.

[19]

Choi S. O., Penninger M., Kim C. H., Schneider W. F., Thompson L. T. ACS Catal., 2013, 3(12): 2719.

[20]

Giang H. T., Duy H. T., Ngan P. Q., Thai G. H., Toan N. N. Anal. Methods, 2013, 5(16): 4252.

[21]

Wang Y., Cui X., Li Y., Shu Z., Chen H., Shi J. Micropor. Mesopor. Mater., 2013, 176: 8.

[22]

Xiao P., Zhong L., Zhu J., Hong J., Li J., Li H., Zhu Y. Catal. Today, 2015, 258: 660.

[23]

Li H., Zhu J., Xiao P., Zhan Y., Lv K., Wu L., Li M. Micropor. Me-sopor. Mater., 2016, 221: 159.

[24]

Xiao P., Zhu J., Li H., Jiang W., Wang T., Zhu Y., Zhao Y., Li J. Chem. Cat. Chem., 2014, 6(6): 1774.

[25]

Yu Z., Gao L., Yuan S., Wu Y. J. Chem. Soc., Faraday Trans., 1992, 88(21): 3245.

[26]

Zhao D., Feng J., Huo Q., Melosh N., Fredrickson G. H., Chmelka B. F., Stucky G. D. Science, 1998, 279(5350): 548.

[27]

Zhao D., Huo Q., Feng J., Chmelka B. F., Stucky G. D. J. Am. Chem. Soc., 1998, 120(24): 6024.

[28]

Liu Y. M., Feng W. L., Li T. C., He H. Y., Dai W. L., Huang W., Cao Y., Fan K. N. J. Catal., 2006, 239(1): 125.

[29]

Marezio M., Dernier P. D. Mater. Res. Bull., 1971, 6(1): 23.

[30]

Pandey S. K., Khalid S., Lalla N. P., Pimpale A.V. J. Phys: Condens. Mat., 2006, 18(47): 10617.

[31]

Zhu J. J., Xiao D. H., Li J., Yang X. G., Wu Y. J. Mol. Catal. A: Chem., 2005, 234(1/2): 99.

[32]

Ferri D., Forni L. Appl. Catal. B: Environ., 1998, 16(2): 119.

[33]

Mineshige A., Kobune M., Fujii S., Ogumi Z., Inaba M., Yao T., Ki-kuchi K. J. Solid State Chem., 1999, 142(2): 374.

[34]

Liu J., Zhao Z., Xu C. M., Duan A. J., Jiang G. Y. J. Phys. Chem. C, 2008, 112(15): 5930.

[35]

Li X. G., Dong Y. H., Xian H., Hernández W. Y., Meng M., Zou H. H., Ma A. J., Zhang T. Y., Jiang Z., Tsubaki N. Energy Environ. Sci., 2011, 4(9): 3351.

[36]

Zhang R., Villanueva A., Alamdari H., Kaliaguine S. J. Catal., 2006, 237(2): 368.

[37]

Kaliaguine S., Van Neste A., Szabo V., Gallot J. E., Bassir M., Mu-zychuk R. Appl. Catal. A: Gen., 2001, 209(1/2): 345.

[38]

Au C. T., Chen K. D., Dai H. X., Liu Y. W., Luo J. Z., Ng C. F. J. Catal., 1998, 179(1): 300.

[39]

Royer S., Van Neste A., Davidson R., McIntyre S., Kaliaguine S. Ind. Eng. Chem. Res., 2004, 43(18): 5670.

[40]

Zhang R., Luo N., Chen B., Kaliaguine S. Energ. Fuel., 2010, 24(7): 3719.

[41]

Leontiou A. A., Ladavos A. K., Pomonis P. J. Appl. Catal. A: Gen., 2003, 241(1): 133.

[42]

Zhu J. J., Zhao Z., Xiao D. H., Li J., Yang X. G., Wu Y. Ind. Eng. Chem. Res., 2005, 44(12): 4227.

[43]

Ladavos A. K., Pomonis P. J. Appl. Catal. A: Gen., 1997, 165(1/2): 73.

[44]

Giannakas A. E., Ladavos A. K., Pomonis P. J. Appl. Catal. B: En-viron., 2004, 49(3): 147.

[45]

Forni L., Oliva C., Barzetti T., Selli E., Ezerets A. M., Vishniakov A. V. Appl. Catal. B: Environ., 1997, 13(1): 35.

[46]

Zhao Z., Yang X. G., Wu Y. Appl. Catal. B: Environ., 1996, 8(3): 281.

[47]

Hoang M., Hughes A. E., Turney T. W. Appl. Surf. Sci., 1993, 72(1): 55.

AI Summary AI Mindmap
PDF

259

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/