Hydrothermal synthesis and magnetic properties of SmCr0.5M0.5O3(M=Fe and Mn) micro-plates

Jiaqi Zhang , Shan Wang , Long Yuan , Changmin Hou

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (1) : 1 -7.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (1) : 1 -7. DOI: 10.1007/s40242-017-7334-0
Article

Hydrothermal synthesis and magnetic properties of SmCr0.5M0.5O3(M=Fe and Mn) micro-plates

Author information +
History +
PDF

Abstract

Nanostructured B-site Fe and Mn doped SmCrO3 was prepared by mild hydrothermal growth. The as-prepared crystals are mainly micrometer-scale plates, ranging from rhombus(SmCr0.5M0.5O3) to elongated he-xagonal(SmCr0.5Mn0.5O3), and finally to well-edged rectangular(SmCr0.17Mn0.5Fe0.33O3) plates. Fe and Mn doped SmCrO3 crystals are indexed into Pbnm space group. The cell parameters of SmCr0.5M0.5O3 are slightly smaller than that of pristine SmCrO3. Binding energy analysis of Cr, Mn and Fe in SmCr0.17Mn0.5Fe0.33O3 sample indicates that they all possess +3 oxidation states. Temperature dependent magnetization of the as-prepared samples presents obviously stronger ferromagnetic interactions than the undoped counterparts. This work represents a remarkable de-velopment for hydrothermal synthesis into fabricating perovskite oxide crystals with uniform distribution of doping ions.

Keywords

Hydrothermal synthesis / Perovskite structure / B-Site ordering / Magnetic property

Cite this article

Download citation ▾
Jiaqi Zhang, Shan Wang, Long Yuan, Changmin Hou. Hydrothermal synthesis and magnetic properties of SmCr0.5M0.5O3(M=Fe and Mn) micro-plates. Chemical Research in Chinese Universities, 2018, 34(1): 1-7 DOI:10.1007/s40242-017-7334-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Peña M. A., Fierro J. L. G. Chem. Rev., 2001, 101: 1981.

[2]

Moritomo Y., Asamitsu A., Kuwahara H., Tokura Y. Nature, 1996, 380: 141.

[3]

Eerenstein W., Mathur N. D., Scott J. F. Nature, 2006, 442: 759.

[4]

Rao C. N. R., Sundaresan A., Saha R. J. Phys. Chem. Lett., 2012, 3: 2237.

[5]

Arakawa T., Kurachi H., Shiokawa J. J. Mater. Sci., 1985, 20: 1207.

[6]

Siemons M., Leifert A., Simon U. Adv. Funct. Mater., 2007, 17: 2189.

[7]

Huang K., Chu X., Feng W., Zhou C., Si W., Wu X., Yuan L., Feng S. Chem. Eng. J., 2014, 244: 27.

[8]

Huang K., Chu X., Yuan L., Feng W., Wu X., Wang X., Feng S. Chem. Commun., 2014, 50: 9200.

[9]

Tao S., Irvine J. T. S. Nat. Mater., 2003, 2: 320.

[10]

Goodenough J. B. Phys. Rev., 1955, 100: 564.

[11]

Mira J., Rivas J., Rivadulla F., Vázquez-Vázquez C., López-Quintela M. A. Phys. Rev. B, 1999, 60: 2998.

[12]

Feng S., Yuan H., Shi Z., Chen Y., Wang Y., Huang K., Hou C., Li J., Pang G., Hou Y. J. Mater. Sci., 2008, 43: 2131.

[13]

Ueda K., Tabata H., Kawai T. Science, 1998, 280: 1064.

[14]

Sahu J. R., Serrao C. R., Ray N., Waghmare U. V., Rao C. N. R. J. Mater. Chem., 2007, 17: 42.

[15]

Lee J. H., Jeong Y. K., Park J. H., Oak M. A., Jang H. M., Son J. Y., Scott J. F. Phys. Rev. Lett., 2011, 107: 117201.

[16]

Jung J. S., Iyama A., Nakamura H., Mizumaki M., Kawamura N., Wakabayashi Y., Kimura T. Phys. Rev. B, 2010, 82: 212403.

[17]

O’Flynn D., Tomy C. V., Lees M. R., Daoud-Aladine A., Bala-krishnan G. Phys. Rev. B, 2011, 83: 174426.

[18]

Villafuerte-Castrejón M. E., García-Guaderrama M., Fuentes L., Prado-Gonjal J., González A. M., de la Rubia M. Á, García-Hernández M., Morán E. Inorg. Chem., 2011, 50: 8340.

[19]

Kanamori J. J. Phys. Chem. Solids, 1959, 10: 87.

[20]

Goodenough J. B. Phys. Rev., 1955, 100: 564.

[21]

Hu W., Chen Y., Yuan H., Zhang G., Li G., Pang G., Feng S. J. Solid State Chem., 2010, 183: 1582.

[22]

Rajeswaran B., Mandal P., Saha R., Suard E., Sundaresan A., Rao C. N. R. Chem. Mater., 2012, 24: 3591.

[23]

Serrao C. R., Kundu A. K., Krupanidhi S. B., Waghmare U. V., Rao C. N. R. Phys. Rev. B, 2005, 72: 220101.

[24]

Judin V. M., Sherman A. B., Myl’nikova I. E. Phys. Lett., 1966, 22: 554.

[25]

Feng S., Xu R. Acc. Chem. Res., 2001, 34: 239.

[26]

Modeshia D. R., Walton R. I. Chem. Soc. Rev., 2010, 39: 4303.

[27]

Sardar K., Lees M. R., Kashtiban R. J., Sloan J., Walton R. I. Chem. Mater., 2011, 23: 48.

[28]

Chen Y., Yuan H., Li G., Tian G., Feng S. J. Cryst. Growth, 2007, 305: 242.

[29]

Zhou Z., Guo L., Yang H., Liu Q., Ye F. J. Alloys Comp., 2014, 583: 21.

[30]

Yuan L., Huang K., Hou C., Feng W., Wang S., Zhou C., Feng S. New J. Chem., 2014, 38: 1168.

[31]

Wang S., Huang K., Hou C., Yuan L., Wu X., Lu D. Dalton Trans., 2015, 44: 17201.

[32]

Yuan L., Huang K., Wang S., Hou C., Wu X., Zou B., Feng S. Cryst. Growth Des., 2016, 16: 6522.

[33]

Bakshi V. R., Prasad B. V., Gade N. R., Chou F. C., Devarasetty S. B. AIP Conf. Proc., 2014, 1591: 1735.

[34]

Nashim A., Parida K. M. Chem. Eng. J., 2013.

[35]

Aono H., Sato M., Traversa E., Sakamoto M., Sadaoka Y. J. Am. Ceram. Soc., 2001, 84: 341.

[36]

Sivasubramanian V., Rama Rao M. V., Shripathi T., Subramanian V., Murthy V. R. K. Mater. Sci. Eng., 2000.

[37]

Gorodetsky G., Hornreich R. M., Shaft S., Sharon B., Shaulov A., Wanklyn B. M. Phys. Rev. B, 1977, 16: 515.

[38]

Cheng J. G., Zhou J. S., Goodenough J. B., Su Y. T., Sui Y., Ren Y. Phys. Rev. B, 2011, 84: 104415.

[39]

Marshall L. G., Cheng J. G., Zhou J. S., Goodenough J. B., Yan J. Q., Mandrus D. G. Phys. Rev. B, 2012, 86: 064417.

[40]

Fang Y., Yan S. M., Gong Y. Y., Zhu W. L., Cao Q. Q., Wang D. H., Du Y. W. Chin. Phys. B, 2014, 23: 127502.

[41]

Dash B. B., Ravi S. J. Magn. Magn. Mater., 2016, 405: 209.

AI Summary AI Mindmap
PDF

175

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/