Electrochemical immunoassay of E. coli in urban sludge using electron mediator-mediated enzymatic catalysis and gold nanoparticles for signal amplification

Wenjie Lu , Rongjin Xu , Xinai Zhang , Jianzhong Shen , Changfeng Li

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (1) : 101 -106.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (1) : 101 -106. DOI: 10.1007/s40242-017-7254-z
Article

Electrochemical immunoassay of E. coli in urban sludge using electron mediator-mediated enzymatic catalysis and gold nanoparticles for signal amplification

Author information +
History +
PDF

Abstract

An electrochemical immunosensor was developed for sensitive assay of E. coli in urban sludge, in which electron mediator-mediated enzymatic catalysis and gold nanoparticles(AuNPs) were utilized for signal amplification. The immnuosensing platform chitosan-thionine(chit-thio)/poly(amidoamine) dendrimer-encapsulated AuNPs [PAMAM(Au)] composites were first prepared from chit-thio and PAMAM(Au) using the layer-by-layer method to provide a matrix for high-stability and high-bioactivity bindings of the capture antibody(cAb). Moreover, the {dAb-AuNPs-HRP} nanoprobes were designed to exploit the amplification effect of the carrier AuNPs due to the loading amounts of horseradish peroxidase(HRP) and the detection antibody(dAb). The sandwich-type immunoassay was then successfully used to assay E. coli based on the oxidation of thionine as a result of H2O2-induced enzymatic catalytic reaction by HRP. This study presents a powerful tool in electrochemical immunoassay for E. coli detection with rapid response, high-sensitivity and high-specificity, providing a potential new tool for feasibility assessment of sludge recycle.

Keywords

Electron mediator / Enzymatic catalysis / Electrochemical immunosensor / E. coli / Urban sludge

Cite this article

Download citation ▾
Wenjie Lu, Rongjin Xu, Xinai Zhang, Jianzhong Shen, Changfeng Li. Electrochemical immunoassay of E. coli in urban sludge using electron mediator-mediated enzymatic catalysis and gold nanoparticles for signal amplification. Chemical Research in Chinese Universities, 2018, 34(1): 101-106 DOI:10.1007/s40242-017-7254-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Money E. S., Carter G. P., Serre M. L. Environ. Sci. Technol., 2009, 43: 3736.

[2]

Zhang X., Lu W., Han E., Wang S., Shen J. Electrochim. Acta, 2014, 141: 384.

[3]

Norton-Brandão D., Scherrenberg S. M., van Lier J. B. J. Environ. Manage., 2013, 122: 85.

[4]

Lang N. L., Smith S. R. Water Res., 2008, 42: 2229.

[5]

Wéry N., Lhoutellier C., Ducray F., Delgenès J. P., Godon J. J. Water Res., 2008, 42: 53.

[6]

Rompré A., Servais P., Baudart J., de-Roubin M. R., Laurent P. J. Microbiol. Methods, 2002, 49: 31.

[7]

Voitoux E., Lafarge V., Collette C., Lombard B. Int. J. Food Micro-biol., 2002, 77: 213.

[8]

Van Kessel J. S., Karns J. S., Gorski L., McCluskey B. J., Perdue M. L. J. Dairy Sci., 2004, 87: 2822.

[9]

Rantsiou K., Alessandria V., Cocolin L. Int. J. Food Microbiol., 2012, 154: 37.

[10]

Zhang Y., Tan C., Fei R., Liu X., Zhou Y., Chen J., Chen H., Zhou R., Hu Y. Anal. Chem., 2014, 86: 1115.

[11]

Geng P., Zhang X., Teng Y., Fu Y., Xu L., Xu M., Jin L., Zhang W. Biosens. Bioelectron., 2011, 26: 3325.

[12]

Cui Z., Wu D., Zhang Y., Ma H., Li H., Du B., Wei Q., Ju H. Anal. Chim. Acta, 2014, 807: 44.

[13]

Lu D., Wang J., Wang L., Du D., Timchalk C., Barr R., Lin Y. Adv. Funct. Mater., 2011, 21: 4371.

[14]

Zhang X., Jiang Y., Huang C., Shen J., Dong X., Chen G., Zhang W. Biosens. Bioelectron., 2017, 89: 913.

[15]

Zhong G. X., Wang P., Fu F. H., Weng S. H., Chen W., Li S. G., Liu A. L., Wu Z. Y., Zhu X., Lin X. H., Lin J. H., Xia X. H. Talanta, 2014, 125: 439.

[16]

Zhang X., Shen J., Ma H., Jiang Y., Huang C., Han E., Yao B., He Y. Biosens. Bioelectron., 2016, 80: 666.

[17]

Zhang X., Huang C., Jiang Y., Shen J., Geng P., Zhang W., Huang Q. RSC Adv., 2016, 6: 112981.

[18]

Zhang J. J., Cheng F. F., Zheng T. T., Zhu J. J. Anal. Chem., 2010, 82: 3547.

[19]

Nossol E., Zarbin A. J. G. Adv. Funct. Mater., 2009, 19: 3980.

[20]

Deng L., Wang Y., Shang L., Wen D., Wang F., Dong S. Biosens. Bioelectron., 2008, 24: 951.

[21]

Wang Z., Li M., Su P., Zhang Y., Shen Y., Han D., Ivaska A., Niu L. Electrochem. Commun., 2008, 10: 306.

[22]

Wang Z., Li M., Zhang Y., Yuan J., Shen Y., Niu L., Ivaska A. Carbon, 2007, 45: 2111.

[23]

Zhang X., Lu W., Shen J., Jiang Y., Han E., Dong X., Huang J. Biosens. Bioelectron., 2015, 74: 291.

[24]

Zhou J., Tang J., Chen G., Tang D. Biosens. Bioelectron., 2014, 54: 323.

[25]

Huo X., Liu P., Zhu J., Liu X., Ju H. Biosens. Bioelectron., 2016, 85: 698.

[26]

An Y., Jiang X., Bi W., Chen H., Jin L., Zhang S., Wang C., Zhang W. Biosens. Bioelectron., 2012, 32: 224.

[27]

Zhao J., Zhu X., Li T., Li G. Analyst, 2008, 133: 1242.

[28]

Wang J., Meng W., Zheng X., Liu S., Li G. Biosens. Bioelectron., 2009, 24: 1598.

[29]

Liu T., Zhao J., Zhang D., Li G. Anal. Chem., 2010, 82: 229.

[30]

Yang Y., Li C., Yin L., Liu M., Wang Z., Shu Y., Li G. ACS Appl. Mater. Interfaces, 2014, 6: 7579.

[31]

Grabar K. C., Freeman R. G., Hommer M. B., Natan M. J. Anal. Chem., 1995, 67: 735.

AI Summary AI Mindmap
PDF

156

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/