Ultrasonic-assisted mesoporous silica nanoparticle-mediated exogenous gene stable expression in tobacco

Zhongni Wang , Huijing Liu , Luhua Li , Quanliang Li , Xiuran Wang , Yuan Jiang , Yuqin Fu , Changli Lü

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (6) : 912 -916.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (6) : 912 -916. DOI: 10.1007/s40242-017-7240-5
Article

Ultrasonic-assisted mesoporous silica nanoparticle-mediated exogenous gene stable expression in tobacco

Author information +
History +
PDF

Abstract

Although nanotechnology is considered to be one of the most important technologies to promote social and economic development in the twenty-first century, its application in agriculture is relatively few compared with those in other fields. In this article, plasmid carrying GUS gene was successfully delivered into tobacco(Nicotiana tabacum) by mesoporous silica nanoparticles(MSNs) modified with positively charged poly-L-lysine(PLL) with the assist of ultrasonic method. Stable transformation was confirmed by polymerase chain reaction(PCR) detection and GUS histochemical staining. Meanwhile, we also studied the factors that could enhance the genetic transformation efficiency. The result suggests that the callus receptor and a suitable DNA/MSNs ratio contribute a lot to the transformation efficiency. In a word, our research provides an efficient and cost-effective method for gene delivery to plant.

Keywords

Mesoporous silica nanoparticle / Gene delivery / Tobacco

Cite this article

Download citation ▾
Zhongni Wang, Huijing Liu, Luhua Li, Quanliang Li, Xiuran Wang, Yuan Jiang, Yuqin Fu, Changli Lü. Ultrasonic-assisted mesoporous silica nanoparticle-mediated exogenous gene stable expression in tobacco. Chemical Research in Chinese Universities, 2017, 33(6): 912-916 DOI:10.1007/s40242-017-7240-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tanasienko I. V., Yemets A. I., Finiuk N. S., Stoika R. R., Blume Y. B. Cell Biol. Int., 2015, 39(3): 243.

[2]

Rafsanjani M. S., Alvari A., Samim M., Hejazi M. A., Abdin M. Z. Recent Pat. Biotechnol., 2012, 6(1): 69.

[3]

Xu Z. P., Zeng Q. H., Lu G. Q., Yu A. B. Chem. Eng. Sci., 2006, 61(3): 1027.

[4]

Sokolova V., Epple M. Angew. Chem. Int. Ed. Engl., 2008, 47(8): 1382.

[5]

Torney F., Trewyn B. G., Lin V. S., Wang K. Nat. Nanotechnol., 2007, 2(5): 295.

[6]

Martin-Ortigosa S., Valenstein J. S., Lin V. S., Trewyn B. G., Wang K. Adv. Funct. Mater., 2012, 22(17): 3576.

[7]

Köping-Höggård M., Tubulekas I., Guan H., Edwards K., Nilsson M., Vårum K. M., Artursson P. Gene Ther., 2001, 8(14): 1108.

[8]

Nguyen D. N., Green J. J., Chan J. M., Langer R., Anderson D. G. Adv. Mater., 2009, 21(8): 847.

[9]

Liu J., Wang F. H., Wang L. L., Xiao S. R., Tong C. Y., Tang D. Y., Liu M. X. J. Cent. South. Univ. Technol., 2008, 15(6): 768.

[10]

Pasupathy K., Lin S., Hu Q., Luo H., Ke P. C. Biotechnol. J., 2008, 3(8): 1078.

[11]

Song Y., Li Y., Cui H., Li Y. Biotechnol. Bull., 2009, 19(6): 75.

[12]

Bharali D. J., Klejbor I., Stachowiak E. K., Dutta P., Roy I., Kaur N., Bergey E. J., Prasad P. N., Stachowiak M. K. Proc. Natl. Acad. Sci. USA, 2005, 102(32): 11539.

[13]

Trewyn B. G., Giri S., Slowing I. I., Lin V. S. Chem. Commun., 2007, 38(31): 3236.

[14]

Barnes C. A., Elsaesser A., Arkusz J., Smok A., Palus J., Lesniak A., Salvati A., Hanrahan J. P., Jong W. H., Dziubaltowska E., Stepnik M., Rydzynski K., McKerr G., Lynch I., Dawson K. A., Howard C. V. Nano Lett., 2008, 8(9): 3069.

[15]

Hom C., Lu J., Liong M., Luo H., Li Z., Zink J. I., Tamanoi F. Small, 2010, 6(11): 1185.

[16]

Fu Y. Q., Li L. H., Wang H., Jiang Y., Liu H. J., Cui X. Y., Wang P. W., C. L. Chem. Res. Chinese Universities, 2015, 31(6): 976.

[17]

Liu Y., Yang H., Sakanishi A. Biotechnol. Adv., 2006, 24(1): 1.

[18]

Wu H. Y., Li J. H., Wei J. C., Dai Y. F., Peng Z. P., Chen Y. W., Liu T. X. Chem. Res. Chinese Universities, 2015, 31(5): 890.

[19]

Martin-Ortigosa S., Peterson D. J., Valenstein J. S., Lin V. S., Trewyn B. G., Lyznik L. A., Wang K. Plant Phsiol., 2014, 164(2): 537.

[20]

Mishra A. K., Pandey H., Agarwa V., Ramteke P. W., Pandey A. C. J. Nanopart. Res., 2014, 16(8): 1.

[21]

Zhang M., Liu J., Kuang Y., Li Q., Zheng D. W., Song Q., Chen H., Chen X., Xu Y., Li C., Jiang B. Int. J. Biol. Macromol., 2017, 98(4): 691.

[22]

Xia B., Dong C., Zhang W. Y., Lu Y., Chen J. H., Shi J. S. Sci. China. Life. Sci., 2013, 56(1): 82.

[23]

Boussif O., Lezoualc’h F., Zanta M. A., Mergny M. D., Scherman D., Demeneix B., Behr J. P. Proc. Natl. Acad. Sci. USA, 1995, 92(16): 7297.

[24]

Bivas-Benita M., Romeijn S., Junginger H. E., Borchard G. Eur. J. Pharm. Biopharm., 2004, 58(1): 1.

[25]

He X., Nie H., Wang K., Tan W., Wu X., Zhang P. Anal. Chem., 2008, 80(24): 9597.

[26]

Burns A. A., Vider J., Ow H., Herz E., Penate-Medina O., Baumgart M., Larson S. M., Wiesner U., Bradbury M. Nano Lett., 2009, 9(1): 442.

[27]

Wang N. N., Shih M. C., Li N. J. Exp. Bot., 2005, 56(413): 909.

[28]

Parisi C., Vigani M., Rodríguez-Cerezo E. Nano. Today, 2015, 10(2): 124.

[29]

Sekhon B. S. Nanotechnol. Sci. Appl., 2014, 7(2): 31.

[30]

Tripathi D. K., Shweta Singh S., Singh S., Pandey R., Singh V. P., Sharma N. C., Prasad S. M., Dubey N. K., Chauhan D. K. Plant Physiol. Biochem., 2017, 110: 2.

[31]

Choudhary R. C., Kumaraswamy R. V., Kumari S., Sharma S. S., Pal A., Raliya R., Biswas P., Saharan V. Sci. Rep., 2017, 7(1): 9754.

[32]

Dimkpa C. O., White J. C., Elmer W. H., Gardea-Torresdey J. J. Agric. Food. Chem., 2017, 65(39): 8552.

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/