Recovery of metals from anodic dissolution slime of waste from electric and electronic equipment(WEEE) by extraction in ionic liquids

Ana Maria Popescu , Kazimir Yanushkevich , Vasile Soare , Cristina Donath , Elena Ionela Neacsu , Virgil Constantin

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (1) : 113 -118.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (1) : 113 -118. DOI: 10.1007/s40242-017-7225-4
Article

Recovery of metals from anodic dissolution slime of waste from electric and electronic equipment(WEEE) by extraction in ionic liquids

Author information +
History +
PDF

Abstract

The recovery of metals from a multi-component alloy obtained by crushing, melting and anodic dissolu-tion of waste from electric and electronic equipment(WEEE) was investigated. The anodic dissolution of the alloy was carried out in an electrolysis cell with one copper cathode and a central cast anode, immersed in the electrolyte formed by choline chloride-ethylene glycol-iodine. The temperature of the electrolyte during the process was 343 K. Depending on the electrolysis parameters(current density and cell voltage), cathodic deposits of Sn, Pb and Zn of >99% purity were obtained. Cyclic voltammetry was used in order to determine the deposition potentials of the studied metals. The obtained metallic deposits were subject of determination of XRD, SEM/EDX and AFM in order to evidence the deposits structure and morphology. The experiments performed demonstrated the possibility of separating/selective recovery of metals from the multi-component alloy resulted from the waste from electrical and electronic equipment by anodic dissolution in ionic liquids.

Keywords

Metals recovery / Ionic liquid / Waste from electric and electronic equipment(WEEE)

Cite this article

Download citation ▾
Ana Maria Popescu, Kazimir Yanushkevich, Vasile Soare, Cristina Donath, Elena Ionela Neacsu, Virgil Constantin. Recovery of metals from anodic dissolution slime of waste from electric and electronic equipment(WEEE) by extraction in ionic liquids. Chemical Research in Chinese Universities, 2018, 34(1): 113-118 DOI:10.1007/s40242-017-7225-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Berenblyum A. S., Katsman Е А А, Karasev Y. Z. Appl. Catal. A: Gen., 2006, 315: 128.

[2]

Ohno H. Electrochemical Aspects of Ionic Liquids, 2011 Second Hoboken, New Jersey: John Wiley & Sons.

[3]

Schubert T., Zein El Abedin S., Abott A. P., McKenzie K. J., Ryder K. S., Endres F., Endres F., MacFarlane D. R., Abbott A. P. Electrodeposition of Metals, in Electrodeposition from Ionic Liquids, 2008, Weinheim: Wiley-VCH.

[4]

Whitehead J. A., Zhang J., Pereira N., McCluskey A., Lawrance G. A. Hydrometallurgy, 2007, 88: 109.

[5]

Popescu A. M., Donath C., Neacsu E. I., Soare V., Constantin V. Rev. Chim.(Bucharest), 2016, 67(6): 1076.

[6]

Abbott A. P., Capper G., McKenzie K., Ryder K. S. J. Electroanal. Chem., 2007, 599: 288.

[7]

Salome S., Pereira N. M., Ferreira E. S., Pereira C. M., Silva A. F. J. Electroanal. Chem., 2013, 703: 80.

[8]

Xing S. Environmentally Friendly Baths for Cu-Sn Co-electrodeposition: Cyanide-free Aqueous Bath and Deep Eutectic Solvents, 2014, Trento: University of Trento.

[9]

Golgovici F., Visan T. Chalcogenide Lett., 2011, 8(8): 487.

[10]

Ru J., Hua Y., Xu C., Li J., Li Y., Wang D., Qi C., Gong K. Russ. J. Electrochem., 2015, 51(8): 773.

[11]

Abbott A. P., Barron J. C., Ryder K. S. Trans. Inst. Metal Finishing, 2009, 87(4): 201.

[12]

Abbott A. P., Capper G., McKenzie K. J., Ryder K. S. J. Electroanal. Chem., 2007, 599: 288.

[13]

Constantin V., Adya A. K., Popescu A. M. Fluid Phase Equilib., 2015, 395: 58.

[14]

Golgovici F., Cojocaru A., Anicai L., Visan T. Mater. Chem. Phys., 2011, 126(3): 700.

[15]

Ghosh S., Roy S. Mater. Sci. Eng. B, 2014, 190: 104.

[16]

Ghosh S., Roy S. Electrochim. Acta, 2015, 183: 27.

[17]

Pereira N. M., Salome S., Pereira C. M., Silva A. F. J. Appl. Electrochem., 2012, 42: 561.

[18]

Golgovici F. Chem. Bull. "Politehnica" Univ.(Timisoara), 2011, 56(70): 62.

[19]

Polzler M., Whitehead A. H., Gollas B. ECS Trans., 2010, 25: 43.

[20]

Abbott A. P., Barron J. C., Frisch G., Ryder K. S., Silva A. F. Electrochim. Acta, 2011, 56: 5272.

[21]

Soare V., Dumitrescu D., Burada M., Constantin I., Soare V., Capota P., Popescu A. M., Constantin V. Rev. Chim.(Bucharest), 2016, 67(5): 920.

[22]

Diffraction Pattern File: 85-2838, 85-5648, 81-1936, 01-1242, ICDD, PCPDFWIN V2.01, Joint Committee on Powder Diffraction Standards(JCPDS)-International Center for Diffraction Data(ICDD), Newtown Square, PA, 1998

[23]

Lipson H. S., Lipson G., Steeple H., Stipl G. Interpretation of X-ray Powder Diffraction Patterns, 1972, Moscow: Mir.

[24]

McCarthy G. J., Martin K. J., Holzer J. M., Grier D. G. Adv. in X-ray Analysis, 1992, 35: 17.

[25]

Popescu A. M., Constantin V. Chem. Res. Chinese Universities, 2014, 30(1): 119.

[26]

Popescu A. M., Cojocaru A., Donath C., Constantin V. Chem. Res. Chinese Universities, 2013, 29(5): 991.

[27]

PDF-2 Data Base JCPDS-ICDD, JCPDS Card No. 026-1451 and No. 00-004-0836, Joint Committee on Powder Diffraction Standards (JCPDS)-International Centre for Diffraction Data(ICDD), Newtown Square, PA, 2007

[28]

Dang J., Shi X., Zhang Q. Wang W, Sci. Total Environ., 2015, 517: 1.

[29]

Zhang Q. Z., Gao R., Xu F., Zhou Q., Jiang G. B., Wang T., Chen J. M., Hu J. T., Jiang W., Wang W. W. Environ. Sci. Technol., 2014, 48: 5051.

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/