Tuning shell thickness of MnO/C core-shell nanowires for optimum performance of lithium-ion batteries

Dan Zhang , Guangshe Li , Jianming Fan , Baoyun Li , Liping Li

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (6) : 924 -928.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (6) : 924 -928. DOI: 10.1007/s40242-017-7223-6
Article

Tuning shell thickness of MnO/C core-shell nanowires for optimum performance of lithium-ion batteries

Author information +
History +
PDF

Abstract

MnO/C core-shell nanowires with varying carbon shell thickness were synthesized via calcining resorcinol-formaldehyde resin(RF) with different amounts of hydrothermally synthesized MnO2 nanowires. The relationship between the carbon shell thickness and the anode performance of the MnO/C materials was discussed. With a suitable carbon shell thickness(6.8 nm), the MnO/C core-shell nanowires exhibit better cycling and rate performance than those with a smaller or larger thickness. The TEM results show that after 50 cycles, the core-shell structure with this thickness can be retained, which leads to superior performance. This contribution provides a significant guiding model for optimizing the electrochemical performance of MnO/C core-shell materials by controlling the thickness of carbon shells.

Keywords

Anode / MnO / Conductivity / Capacity

Cite this article

Download citation ▾
Dan Zhang, Guangshe Li, Jianming Fan, Baoyun Li, Liping Li. Tuning shell thickness of MnO/C core-shell nanowires for optimum performance of lithium-ion batteries. Chemical Research in Chinese Universities, 2017, 33(6): 924-928 DOI:10.1007/s40242-017-7223-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang S. B., Xing Y. L., Xiao C. L., Xu H. Z., Zhang S. C. J. Power Sources, 2016, 307: 11.

[2]

Zhang W., Sheng J. Z., Zhang J., He T., Hu L., Wang R., Mai L. Q., Mu S. C. J. Mater. Chem. A, 2016, 4: 16936.

[3]

Yuan T. Z., Jiang Y. Z., Sun W. P., Xiang B., Li Y., Yan M., Xu B., Dou S. X. Adv. Funct. Mater., 2016, 26: 2198.

[4]

Zhang W., Li J. N., Zhang J., Sheng J. Z., He T., Tian M. Y., Zhao Y. F., Xie C. J., Mai L. Q., Mu S. C. ACS Appl. Mater. Interfaces, 2017, 9: 12680.

[5]

Ma J. J., Wang H. J., Liu X. R., Lu L. D., Nie L. Y., Yang X., Chai Y. Q., Yuan R. Chemical Engineering Journal, 2017, 309: 545.

[6]

Zhu S., Pu B., Sui S. M., Zhang R., Xu S. P., Ma C., Shi C. S. Mate-rials Letters, 2017, 189: 236.

[7]

Ding Y., Chen L. H., Pan P., Du J., Fu Z. B., Qin C. Q., Wang F. Ap-plied Surface Science, 2017, 422: 1113.

[8]

Chen Y. L., Hu Y., Shen Z., Chen R. Z., He X., Zhang X. W., Li Y. Q., Wu K. S. Journal of Power Sources, 2017, 342: 467.

[9]

Sun B., Chen Z. X., Kim H. S., Ahn H., Wang G. X. J. Power Sources, 2011, 196: 3346.

[10]

Li X. W., Xiong S. L., Li J. F., Liang X., Wang J. Z., Bai J., Qian Y. T. Chem. Eur. J., 2013, 19: 11310.

[11]

Wei Q. L., Xiong F. Y., Tan S. S., Huang L., Lan E. H., Dunn B., Mai L. Q. Adv. Mater., 2017, 29: 1602300.

[12]

Li X. L., Lv H. F., Dai J., Ma L., Zeng X. C., Wu X. J., Yang J. L. J. Am. Chem. Soc., 2017, 139: 6290.

[13]

Gao Y., Wang Z., Wan J., Zou G., Qian Y. J. Cryst. Growth, 2005, 279: 415.

[14]

Samuel E., Jo H. S., Joshi B., An S., Park H. G., Kim Y. I., Yoon W. Y., Yoon S. S. Electrochimica Acta, 2017, 231: 582.

[15]

Xiao Y., Cao M. H. ACS Appl. Mater. Interfaces, 2015, 7: 12840.

[16]

Zhang L. L., Ge D. H., Qu G. L., Zheng J. W., Cao X. Q., Gu H. W. Nanoscale, 2017, 9: 5451.

[17]

Chen L. F., Ma S. X., Lu S., Feng Y., Zhang J., Xin S., Yu S. H. Na-no Res., 2017, 10: 1.

[18]

Liu B. L., Li D., Liu Z. J., Gu L. L., Xie W. H., Li Q., Guo P. Q., Liu D. Q., He D. Y. Applied Surface Science, 2017, 394: 1.

[19]

Li L., Raji A. R. O., Tour J. M. Adv. Mater., 2013, 25: 6298.

[20]

Li Y. Y., Zhang Q. W., Zhu J. L., Wei X. L., Shen P. K. J. Mater. Chem. A, 2014, 2: 3163.

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/