Physicochemical properties of Bi-containing ionic liquid analogs based on choline chloride

Luxia Bu , Daying Liu , Zhen Wei , Zhanlin Ma

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (6) : 929 -933.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (6) : 929 -933. DOI: 10.1007/s40242-017-7170-2
Article

Physicochemical properties of Bi-containing ionic liquid analogs based on choline chloride

Author information +
History +
PDF

Abstract

The preparation and characterization of homogeneous and colorless ionic liquid analogs(ILAs) containing choline chloride(ChCl), malonic acid and bismuth chloride were investigated. The structure of the above mixture was preliminarily analyzed, and then the physicochemical properties including viscosity, conductivity and density were investigated as functions of temperature and composition. Additionally, the thermal stability of the ILAs and the electrochemical behavior of Bi3+ ions in the medium were studied. Structure analysis reveals that the synthesis of deep eutectic solvents(DESs) is closely related to the formation of hydrogen bonds between malonic acid and ChCl, with their viscosity, conductivity and density being greatly dependent on the temperature and composition. Thermogravimetric analysis demonstrates that the ILAs are very stable between room temperature and 398.15 K. And the electrochemical experiments indicate that the bismuth films can be successfully deposited from this ILAs and the deposition mechanism of bismuth is a rather irreversible process. The surface morphology of bismuth films deposited on Cu substrates was very compact and smooth. Thus, ChCl-malonic acid DESs were shown to be a good alternative to aqueous solvents for various deposition-related applications.

Keywords

Ionic liquid analog / Physicochemical property / Bismuth / Choline chloride / Deposition

Cite this article

Download citation ▾
Luxia Bu, Daying Liu, Zhen Wei, Zhanlin Ma. Physicochemical properties of Bi-containing ionic liquid analogs based on choline chloride. Chemical Research in Chinese Universities, 2017, 33(6): 929-933 DOI:10.1007/s40242-017-7170-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ma Y., Wljesekara W., Palmqvist A. E. C. J. Electron. Mater., 2012, 41(6): 1138.

[2]

Misra D. K., Sumithra S., Chauhan N. S., Nolting W. M., Poudeu P. F. P., Stokes Kevin L. Mat. Sci. Semicon. Proc., 2015, 40: 453.

[3]

Patil P. B., Mali S. S., Khot K. V., Kondalkar V. V., Ghanwat V. B., Mane R. M., Kharade R. R., Bhosale P. N. Macromol. Symp., 2016, 361(1): 152.

[4]

Zimmer A., Broch L., Boulanger C., Stein N. Electrochim. Acta, 2015, 174: 376.

[5]

Zhou J., Lin Q. H., Li H. Y., Cheng X. Mater. Chem. Phys., 2013, 141(1): 401.

[6]

Wang Z. L., Takahiro A., Tetsuhiko O., Chen Z. C. J. Alloy Compd., 2016, 663: 134.

[7]

Duan X. K., Jiang Y. Z. Thin Solid Films, 2011, 519(10): 3007.

[8]

Bu L.X., Wang W., Wang H. Appl. Surf. Sci., 2007, 253(6): 3360.

[9]

Song Y., Yoo I. J., Heo N. R., Lim D. C., Lee D., Lee J. Y., Lee K. H., Kim K. H., Lim J. H. Curr. Appl. Phys., 2015, 15(3): 261.

[10]

Suzuki Y., Chen Z. L., Fuwa A. J. Jpn. I. Met., 2014, 78(8): 310.

[11]

Manzano C. V., Rojas A. A., Decepida M., Abad B., Feliz Y., Caballero-Calero O., Borca-Tasciuc D. A., Martin-Gonzalez M. J. Solid State Electr., 2013, 17(7): 2071.

[12]

Xu H., Wang W. J. Electron. Mater., 2013, 42(7): 1936.

[13]

Li F. H., Wang W. Electrochim. Acta, 2010, 55(17): 5000.

[14]

Golgovici F., Cojocaru A., Nedelcu M., Visan T. J. Electron. Mater., 2010, 39(9): 2079.

[15]

Paiva A., Craveiro R., Aroso I., Martins M., Reis R. L., Duarte A. R. C. ACS Sustain Chem. Eng., 2014, 2: 1063.

[16]

Popescu A. M., Constantin V. Chem. Res. Chinese Universities, 2014, 30(1): 119.

[17]

Adeeb H., Farouq S., Mjalli I. M., Yahya M. J. Mol. Liq., 2013, 178: 137.

[18]

Abbott A. P., Capper G., Davies D. L., Munro H. L., Rasheed R. K., Tambyrajah V. Chem. Commun., 2001, 19: 2010.

[19]

Abbott A. P., McKenzie K. J. Phys. Chem. Chem. Phys., 2006, 8: 4265.

[20]

Wang H. Y., Jia Y. Z., Wang X. H., Yao Y., Jing Y. J. Therm. Anal. Calorim., 2014, 115: 1779.

[21]

Habibi E., Ghanemi K., Mehdi F., Ali D. Anal. Chim. Acta, 2013, 762: 61.

[22]

Mccalman D. C., Sun L., Zhang Y., Brennecke J. F., Maginn E. J., Schneider W. F. J. Phys. Chem. B, 2015, 119: 6018.

[23]

Bougou M., Van Elew A., Steichen M., Buess-Herman C., Doneux T. J. Solid State Electrochem., 2013, 17: 527.

[24]

Agapescu C., Cojocaru A., Cotarta A., Visan T. J. Appl. Electro-chem., 2013, 43: 309.

[25]

Srivastava M., Yoganandan G., William Grips V. K. Surf. Eng., 2012, 28(6): 424.

[26]

Cojocaru A., Mares M. L., Prioteasa P., Anicai L., Visan T. J. Solid State Electrochem., 2015, 19: 1001.

[27]

Protsenko V. S., Bobrova L. S., Danilov F. I. Ionics, 2017, 23(3): 637.

[28]

Golgovici F., Visan T., Buda M. Chalcogenide Lett., 2013, 10(6): 197.

[29]

Kang W. S., Li W. J., Chou W. C., Tseng M. F., Lin C. S. Thin Solid Films, 2017, 623: 90.

[30]

Gan Y. X., Sweetman J., Lawrence J. G. Mater. Lett., 2010, 64(3): 449.

[31]

Li F. H., Wang W. Appl. Surf. Sci., 2009, 255(7): 4225.

[32]

Ebe H., Ueda M., Ohtsuka T. Electrochim. Acta, 2007, 53(1): 100.

AI Summary AI Mindmap
PDF

168

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/