Insights into the interactions between corrinoid iron-sulfur protein and methyl transferase from human pathogen Clostridium difficile

Yaozhu Wei , Xiangshi Tan

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (5) : 731 -735.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (5) : 731 -735. DOI: 10.1007/s40242-017-7142-6
Article

Insights into the interactions between corrinoid iron-sulfur protein and methyl transferase from human pathogen Clostridium difficile

Author information +
History +
PDF

Abstract

The human pathogen Clostridium difficile infection(CDI) is one of the most important healthcare-associated infections. Methyltransferase(MeTrCd) and corrinoid iron-sulfur protein(CoFeSPCd) are two key proteins in the acetyl-coenzyme A synthesis pathway of Clostridium difficile, which is essential for the survival of the pathogen and is absent in humans. Hence, the interaction between MeTrCd and CoFeSPCd can become innovative targets for the treatment of human CDI. In this study, the interaction between MeTrCd and CoFeSPCd was verified by fluorescence resonance energy transfer measurements. The influence of the interaction on the tertiary structure of MeTrCd and CoFeSPCd was studied by ANS-labeled fluorescence measurements. Molecular docking was also performed to understand the mechanism of the protein interactions. These results provide a molecular basis for innovative drug design and development to treat human CDI.

Keywords

Corrinoid iron-sulfur protein / Methyl transferase / Clostridium difficile / Protein interaction

Cite this article

Download citation ▾
Yaozhu Wei, Xiangshi Tan. Insights into the interactions between corrinoid iron-sulfur protein and methyl transferase from human pathogen Clostridium difficile. Chemical Research in Chinese Universities, 2017, 33(5): 731-735 DOI:10.1007/s40242-017-7142-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rupnik M., Wilcox M. H., Gerding D. N. Nature Reviews Microbi-ology, 2009, 7(7): 526.

[2]

Loo V. G., Poirier L., Miller M. A., Oughton M., Libman M. D., Michaud S., Bourgault A. M., Nguyen T., Frenette C., Kelly M., Vi-bien A., Brassard P., Fenn S., Dewar K., Hudson T. J., Horn R., Rene P., Monczak Y., Dascal A. The New England Journal of Medicine, 2005, 353(23): 2442.

[3]

McDonald L. C., Killgore G. E., Thompson A., Owens R. C. Jr, Kazakova S. V., Sambol S. P., Johnson S., Gerding D. N. The New England Journal of Medicine, 2005, 353(23): 2433.

[4]

Williams O. M., Spencer R. C. British Medical Bulletin, 2009, 91: 87.

[5]

Babcock G. J., Broering T. J., Hernandez H. J., Mandell R. B., Donahue K., Boatright N., Stack A. M., Lowy I., Graziano R., Molrine D., Ambrosino D. M., Thomas W. D. Jr Infection and Immunity, 2006, 74(11): 6339.

[6]

McFarland L. V. Anaerobe, 2009, 15(6): 274.

[7]

Shah D., Dang M. D., Hasbun R., Koo H. L., Jiang Z. D., DuPont H. L., Garey K. W. Expert Review of Anti-infective Therapy, 2010, 8(5): 555.

[8]

Grewal N. S., Salim A. Scandinavian Journal of Surgery, 2010, 99(2): 90.

[9]

Faris B., Blackmore A., Haboubi N. Techniques in Coloproctology, 2010, 14(2): 97.

[10]

Koo H. L., Garey K. W., Dupont H. L. Expert Opinion on Investiga-tional Drugs, 2010, 19(7): 825.

[11]

Sebaihia M., Wren B. W., Mullany P., Fairweather N. F., Minton N., Stabler R., Thomson N. R., Roberts A. P., Cerdeno-Tarraga A. M., Wang H., Holden M. T., Wright A., Churcher C., Quail M. A., Baker S., Bason N., Brooks K., Chillingworth T., Cronin A., Davis P., Dowd L., Fraser A., Feltwell T., Hance Z., Holroyd S., Jagels K., Moule S., Mungall K., Price C., Rabbinowitsch E., Sharp S., Sim-monds M., Stevens K., Unwin L., Whithead S., Dupuy B., Dougan G., Barrell B., Parkhill J. Nature Genetics, 2006, 38(7): 779.

[12]

Moura J. J., Brondino C. D., Trincao J., Romao M. J. Journal of Biological Inorganic Chemistry, 2004, 9(7): 791.

[13]

Doukov T. I., Hemmi H., Drennan C. L., Ragsdale S. W. Journal of Biological Chemistry, 2007, 282(9): 6609.

[14]

Stich T. A., Seravalli J., Venkateshrao S., Spiro T. G., Ragsdale S. W., Brunold T. C. J. Am. Chem. Soc., 2006, 128(15): 5010.

[15]

Matthews R. G., Koutmos M., Datta S. Curr. Opin. Struct. Biol., 2008, 18(6): 658.

[16]

Ragsdale S. W., Pierce E. Biochimica et Biophysica Acta, 2008, 1784(12): 1873.

[17]

Zhu X. F., Gu X., Zhang S. X., Liu Y., Huang Z. X., Tan X. S. Pro-tein Expr. Purif., 2011, 78(1): 86.

[18]

Zhu X. F., Li T. J., Gu X., Zhang S. X., Liu Y., Wang Y., Tan X. S. Metallomics: Integrated Biometal Science, 2013, 5(5): 551.

[19]

Wei Y. Z., Zhu X. F., Zhang S. X., Tan X. S. Journal of Inorganic Biochemistry, 2017, 170: 26.

[20]

Hu S. I., Pezacka E., Wood H. G. Journal of Biological Chemistry, 1984, 259(14): 8892.

[21]

Lu W. P., Harder S. R., Ragsdale S. W. The Journal of Biological Chemistry, 1990, 265(6): 3124.

[22]

Chen R., Weng Z. Proteins, 2003, 51(3): 397.

[23]

Li W. Z., Meng W., Tian P. Chem. Res. Chinese Universities, 2015, 31(1): 149.

[24]

Kung Y., Ando N., Doukov T. I., Blasiak L. C., Bender G., Seravalli J., Ragsdale S. W., Drennan C. L. Nature, 2012, 484(7393): 265.

[25]

Wen J. Y., Lv B. B., Zhang Y., Wang J. M., Ying X., Wang H., Ji L. N., Liu H. Y. Chem. J. Chinese Universities, 2015, 36(6): 1033.

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/