Enhanced visible-light-driven photocatalytic performance of In2O3-loaded TiO2 nanocubes with exposed (001) facet

Bifen Gao , Jianfeng Wan , Desheng Hu , Yilin Chen , Bizhou Lin

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (6) : 934 -938.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (6) : 934 -938. DOI: 10.1007/s40242-017-7133-7
Article

Enhanced visible-light-driven photocatalytic performance of In2O3-loaded TiO2 nanocubes with exposed (001) facet

Author information +
History +
PDF

Abstract

The heterostructures of In2O3 nanoparticle loaded on anatase TiO2 nanocube with exposed (001) facet (In2O3/TiO2-nanocube) were fabricated via a two-step hydrothermal process. The crystal phase, morphology, microstructure and photo-absorption property of the products were characterized by FESEM, TEM, XRD, and UV-Vis diffuse reflectance spectroscopy. The results showed that the percentage of exposed (001) facet of TiO2 nanocube was about 33%. In2O3 nanoparticles were successfully decorated on the surface of TiO2 nanocube to form the In2O3/TiO2 heterojunction. Photocurrent measurements confirmed that (001) faceted surface was advantageous for the charge carrier migration and separation in the composites. In comparison with bare TiO2 nanocube and In2O3/TiO2-nanoparticle, the In2O3/TiO2-nanocube heterostructures exhibited enhanced activity toward the degradation of rhodamine B and tetracycline under visible light irradiation, which was attributed to the synergic effect of In2O3/TiO2 heterojunction and the exposure of (001) facet.

Keywords

Photocatalytic activity / Heterojunction / Crystal facet / In2O3-loaded TiO2 nanocubes

Cite this article

Download citation ▾
Bifen Gao, Jianfeng Wan, Desheng Hu, Yilin Chen, Bizhou Lin. Enhanced visible-light-driven photocatalytic performance of In2O3-loaded TiO2 nanocubes with exposed (001) facet. Chemical Research in Chinese Universities, 2017, 33(6): 934-938 DOI:10.1007/s40242-017-7133-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu Y., Zhou L., Hu Y., Guo C., Qian H., Zhang F., Lou X. W. J. Mater. Chem., 2011, 21: 18359.

[2]

Sun D. D., Cao Y. Y., Xu Y. Y., Zhang G. Y., Sun Y. Q. Chem. Res. Chinese Universities, 2016, 32(6): 882.

[3]

Wang X. Y., Wang H., Yang X. T., Su X. G. Chem. Res. Chinese Universities, 2016, 32(4): 661.

[4]

Yang H. G., Sun C. H., Qiao S. Z., Zou J., Liu G., Smith S. C., Cheng H. M., Lu G. Q. Nature, 2008, 453: 638.

[5]

Han X. G., Kuang Q., Jin M. S. J. Am. Chem. Soc., 2009, 131: 3152.

[6]

Liu S., Yu J., Jaroniec M. J. Am. Chem. Soc., 2010, 132: 11914.

[7]

Chen J. S., Tan Y. L., Li C. M., Cheah Y. L., Luan D., Madhavi S., Boey F. Y. C., Archer L. A., Lou X. W. J. Am. Chem. Soc., 2010, 132: 6124.

[8]

Pavan M., Rühle S., Ginsburg A., Keller D. A., Barad H., Sberna P. M., Nunes D., Martins R., Anderson A. Y., Zaban A., Fortunato E. Sol. Energy Mater. Sol. C, 2015, 132: 549.

[9]

Zhu Y., Wang Y., Chen Z., Qin L., Yang L., Zhu L., Tang P., Gao T., Huang Y., Sha Z., Tang G. Appl. Catal. A: Gen., 2015, 498: 159.

[10]

Wang Q., Li S., Qiao J., Jin R., Yu Y., Gao S. Sol. Energy Mater. Sol. C, 2015, 132: 650.

[11]

Ma F., Geng Z., Yang X., Leng J. RSC Adv., 2015, 5: 46677.

[12]

Mu J., Chen B., Zhang M., Guo Z., Zhang P., Zhang Z., Sun Y., Shao C., Liu Y. ACS Appl. Mater. Inter., 2012, 4: 424.

[13]

Amoli V., Sibi M. G., Banerjee B., Anand M., Maurya A., Farooqui S. A., Bhaumik A., Sinha A. K. ACS Appl. Mater. Inter., 2015, 7: 810.

[14]

Amoli V., Farooqui S., Rai A., Santra C., Rahman S., Sinha A. K., Chowdhury B. RSC Adv., 2015, 5: 67089.

[15]

Niyomkarn S., Puangpetch T., Chavadej S. Mat. Sci. Semicon. Proc., 2014, 25: 112.

[16]

Lalitha K., Kumari V. D., Subrahmanyam M. Indian J. Chem., 2014, 5: 472.

[17]

Wu M., Wang C., Zhao Y., Xiao L., Zhang C., Yu X., Luo B., Hu B., Fan W., Shi W. CrystEngComm, 2015, 17: 2336.

[18]

Li H., Zeng Y., Huang T., Piao L., Liu M. ChemPlusChem, 2012, 77: 1017.

[19]

Gao B., Yuan X., Lu P., Lin B., Chen Y. J. Phys. Chem. Solids, 2015, 87: 171.

[20]

Chen L. Y., Liang Y., Zhang Z. Eur. J. Inorg. Chem., 2009, 7: 903.

[21]

Meng S., Cao Z., Fu X., Chen S. Appl. Surf. Sci., 2015, 324: 188.

[22]

Cao M., Wang P., Ao Y., Wang C., Hou J., Qian J. J. Colloid Interf. Sci., 2016, 467: 129.

[23]

Lv J., Kako T., Li Z., Zou Z., Ye J. J. Phys. Chem. C, 2010, 114: 6157.

[24]

Gao B., Kim Y. J., Chakraborty A. K., Lee W. I. Appl. Catal. B: Environ., 2008, 83: 202.

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/