Preparation of zinc-nickel-cobalt ternary oxide nanosheets as electrodes in supercapacitors

Xue Shi , Guowei Zhou

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (6) : 939 -945.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (6) : 939 -945. DOI: 10.1007/s40242-017-7124-8
Article

Preparation of zinc-nickel-cobalt ternary oxide nanosheets as electrodes in supercapacitors

Author information +
History +
PDF

Abstract

Novel zinc-nickel-cobalt ternary oxide nanosheets were successfully synthesized via an easy solvothermal method followed by calcination and were tailored to have different numbers of wrinkles by controlling the volume ratio of the components in the mixed solvent. Nanosheets with more wrinkles yielded a large specific surface area(111.61 m2/g), which improved their electrochemical properties. The resulting products were characterized using a three-electrode system in 6 mol/L KOH electrolyte solution. With unique structures, the nanosheets with more wrinkles displayed a good capacitive behavior and an excellent specific capacitance retention of 97.18% after 2000 continuous charge-discharge cycles. Considering their high electrochemical performance and simple fabrication, we proposed that these unique zinc-nickel-cobalt oxide nanosheets are promising supercapacitor electrodes for energy storage applications.

Keywords

Zinc-nickel-cobalt / Ternary oxide / Nanosheet / Wrinkle / Supercapacitor

Cite this article

Download citation ▾
Xue Shi, Guowei Zhou. Preparation of zinc-nickel-cobalt ternary oxide nanosheets as electrodes in supercapacitors. Chemical Research in Chinese Universities, 2017, 33(6): 939-945 DOI:10.1007/s40242-017-7124-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xu Y. A., Wang X. F., An C. H., Wang Y. J., Jiao L. F., Yuan H. T. J. Mater. Chem. A, 2014, 2(39): 16480.

[2]

Ma F. W., Sun L. P., Zhao H., Li Q., Huo L. H., Xiao T., Gao S. Chem. Res. Chinese Universities, 2013, 29(4): 735.

[3]

Zhu Y. W., Murali S., Stoller M. D., Ganesh K. J., Cai W. W., Ferreira P. J., Pirkle A., Wallace R. M., Cychosz K. A., Thommes M., Su D., Stach E. A., Ruoff R. S. Science, 2011, 332(6037): 1537.

[4]

Chen L. Y., Hou Y., Kang J. L., Hirataa A., Chen M. W. J. Mater. Chem. A, 2014, 2(22): 8448.

[5]

Mohamed S. G., Tsai Y. Q., Chen C. J., Tsai Y. T., Hung T. F., Chang W. S., Liu R. S. ACS Appl. Mater. Interfaces, 2015, 7(22): 12038.

[6]

Wang H. Z., Shi Y. L., Li Z. X., Zhang W. G., Yao S. W. Chem. Res. Chinese Universities, 2014, 30(4): 650.

[7]

Liu X. M., Long Q., Jiang C. H., Zhan B. B., Li C., Liu S. J., Zhao Q., Huang W., Dong X. C. Nanoscale, 2013, 5(14): 6525.

[8]

Zhang G. Q., Lou X. W. Adv. Mater., 2013, 25(7): 976.

[9]

Zou R. J., Xu K. B., Wang T., He G. J., Liu Q., Liu X. J., Zhang Z. Y., Hu J. Q. J. Mater. Chem. A, 2013, 1(30): 8560.

[10]

Guo L. Y., Ru Q., Song X., Hu S. J., Mo Y. D. RSC Adv., 2015, 5(25): 19241.

[11]

Zhu B. G., Tang S. C., Vongehr S., Xie H., Zhu J., Meng X. K. Chem. Commun., 2016, 52(12): 2624.

[12]

Ren L., Chen J., Wang X. Q., Zhi M. J., Wu J. W., Zhang X. H. RSC Adv., 2015, 5(39): 30963.

[13]

Wu H. B., Hao P., Lou X. W. Energy Environ. Sci., 2013, 6(12): 3619.

[14]

Guan B. K., Guo D., Hu L. L., Zhang G. H., Fu T., Ren W. J., Li J. D., Li Q. H. J. Mater. Chem. A, 2014, 2(38): 16116.

[15]

Wu C., Cai J. J., Zhang Q. B., Zhou X., Zhu Y., Shen P. K., Zhang K. L. ACS Appl. Mater. Interfaces, 2015, 7(48): 26512.

[16]

Chen H. X., Zhang Q. B., Han X., Cai J. J., Liu M. L., Yang Y., Zhang K. L. J. Mater. Chem. A, 2015, 3(47): 24022.

[17]

Yu L., Zhang L., Wu H. B., Zhang G. Q., Lou X. W. Energy Environ. Sci., 2013, 6(9): 2664.

[18]

Wang Q. H., Zhu L. X., Sun L. Q., Liu Y. C., Jiao L. F. J. Mater. Chem. A, 2015, 3(3): 982.

[19]

Wang J. Y., Yang N. L., Tang H. J., Dong Z. H., Jin Q., Yang M., Kisailus D., Zhao H. J., Tang Z. Y., Wang D. Angew. Chem. Int. Ed., 2013, 52(25): 6417.

[20]

Li L., Zhang Y. Q., Shi F., Zhang Y. J., Zhang J. H., Gu C. D., Wang X. L., Tu J. P. ACS Appl. Mater. Interfaces, 2014, 6(20): 18040.

[21]

Niu H., Yang X., Jiang H., Zhou D., Li X., Zhang T., Liu J. Y., Wang Q., Qu F. Y. J. Mater. Chem. A, 2015, 3(47): 24082.

[22]

Zhou X., Li X. W., Sun H. B., Sun P., Liang X. S., Liu F. M., Hu X. L., Lu G. Y. ACS Appl. Mater. Interfaces, 2015, 7(28): 15414.

[23]

Fu C. C., Li G. S., Luo D., Huang X. S., Zheng J., Li L. P. ACS Appl. Mater. Interfaces, 2014, 6(4): 2439.

[24]

Xiao H., Guo W., Sun B., Pei M. S., Zhou G. W. Electrochim. Acta, 2016, 190: 104.

[25]

Liu R. R., Guo W., Sun B., Pang J. L., Pei M. S., Zhou G. W. Electrochim. Acta, 2015, 156: 274.

[26]

Fu W. B., Wang Y. L., Han W. H., Zhang Z. M., Zha H. M., Xie E. Q. J. Mater. Chem. A, 2016, 4(1): 173.

[27]

Yu X. Y., Yu L., Shen L. F., Song X. H., Chen H. Y., Lou X. W. Adv. Funct. Mater., 2014, 24(47): 7440.

[28]

Li X. C., Wang L., Shi J. H., Du N. X., He G. H. ACS Appl. Mater. Interfaces, 2016, 8(27): 17276.

[29]

Mao J. W., Hou X. H., Wang X. Y., Hu S. J., Xiang L. Z. Mater. Lett., 2015, 161: 652.

[30]

Baird T., Campbell K. C., Holliman P. J., Hoyle R. W., Stirling D., Williams B. P., Morris M. J. Mater. Chem., 1997, 7(2): 319.

[31]

Liu X. J., Chang Z., Luo L., Xu T. H., Lei X. D., Liu J. F., Sun X. M. Chem. Mater., 2014, 26(5): 1889.

[32]

Cheng D., Yang Y. F., Xie J. L., Fang C. J., Zhang G. Q., Xiong J. J. Mater. Chem. A, 2015, 3(27): 14348.

[33]

Ramezanzadeh B., Niroumandrad S., Ahmadi A., Mahdavian M., Mohamadzadeh Moghadam M. H. Corros. Sci., 2016, 103: 283.

[34]

Shen L. F., Yu L., Wu H. B., Yu X. Y., Zhang X. G., Lou X. W. Nat. Commun., 2015, 6: 6694.

[35]

Meng F. L., Fang Z. G., Li Z. X., Xu W. W., Wang M. J., Liu Y. P., Zhang J., Wang W. R., Zhao D. Y., Guo X. H. J. Mater. Chem. A, 2013, 1(24): 72353.

[36]

Wang Z. M., Qin Q. Q., Xu W., Yan J., Wu Y. C. ACS Appl. Mater. Interfaces, 2016, 8(28): 18078.

AI Summary AI Mindmap
PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/