Improving the performance of TIPS-pentacene thin film transistors via interface modification

Xiaofei Zhu , Xiaodong Zhang , Lizhen Huang , Zi Wang , Lifeng Chi

Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (1) : 151 -154.

PDF
Chemical Research in Chinese Universities ›› 2018, Vol. 34 ›› Issue (1) : 151 -154. DOI: 10.1007/s40242-017-7122-x
Article

Improving the performance of TIPS-pentacene thin film transistors via interface modification

Author information +
History +
PDF

Abstract

Understanding the structure-performance relationship is crucial for optimizing the performance of organic thin film transistors. Here, two interface modification methods were applied to modulate the thin film morphology of the organic semiconductor, 6,13-bis(triisopropylsilylethynyl)pentacene(TIPS-pentacene). The resulting different film morphologies and packing structures led to distinct charge transport abilities. A substantial 40-fold increase in charge carrier mobility was observed on the octadecyltrichlorosilane(OTS)-modified sample compared to that of the transis-tor on the bare substrate. A better charge mobility greater than 1 cm2·V‒1·s‒1 is realized on the p-sexiphenyl(p-6P)-modified transistors due to the large grain size, good continuity and, importantly, the intimate π-π packing in each domain.

Keywords

Organic semiconductor / Organic thin film transistor / Molecular packing

Cite this article

Download citation ▾
Xiaofei Zhu, Xiaodong Zhang, Lizhen Huang, Zi Wang, Lifeng Chi. Improving the performance of TIPS-pentacene thin film transistors via interface modification. Chemical Research in Chinese Universities, 2018, 34(1): 151-154 DOI:10.1007/s40242-017-7122-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sirringhaus H. Adv. Mater., 2014, 26(9): 1319.

[2]

Anthony J. E., Eaton D. L., Parkin S. R. Org. Lett., 2002, 4(1): 15.

[3]

Beaujuge P. M., Fréchet J. M. J. J. Am. Chem. Soc., 2011, 133(50): 20009.

[4]

Di C. A., Liu Y., Yu G., Zhu D. Acc. Chem. Res., 2009, 42(10): 1573.

[5]

Chen H., Guo Y., Yu G., Zhao Y., Zhang J., Gao D., Liu H., Liu Y. Adv. Mater., 2012, 24(34): 4618.

[6]

Paulus F., Porz M., Schaffroth M., Rominger F., Leineweber A., Vaynzof Y., Bunz U. H. F. Org. Electron., 2016, 33: 102.

[7]

Wang S., Kappl M., Liebewirth I., Müller M., Kirchhoff K., Pisula W., Müllen K. Adv. Mater., 2012, 24(3): 417.

[8]

Yuan Y., Giri G., Ayzner A. L., Zoombelt A. P., Mannsfeld S. C., Chen J., Nordlund D., Toney M. F., Huang J., Bao Z. Nat. Commun., 2014, 5: 3005.

[9]

Diao Y., Lenn K. M., Lee W. Y., Blood-Forsythe M. A., Xu J., Mao Y., Kim Y., Reinspach J. A., Park S., Aspuru-Guzik A., Xue G., Clancy P., Bao Z., Mannsfeld S. C. J. Am. Chem. Soc., 2014, 136(49): 17046.

[10]

Diao Y., Tee B. C. K., Giri G., Xu J., Kim D. H., Becerril H. A., Stoltenberg R. M., Lee T. H., Xue G., Mannsfeld S. C. B., Bao Z. Nat. Mater., 2013, 12(7): 665.

[11]

Yang S. Y., Shin K., Park C. E. Adv. Funct. Mater., 2005, 15(11): 1806.

[12]

Yang J., Yan D. Chem. Soc. Rev., 2009, 38(9): 2634.

[13]

Huang J., Li H., Mo X., Shi M., Wang M., Chen H. Chem. Res. Chinese Universities, 2014, 30(1): 63.

[14]

Giri G., Park S., Vosgueritchian M., Shulaker M. M., Bao Z. Adv. Mater., 2014, 26(3): 487.

[15]

Bheemireddy S. R., Ubaldo P. C., Rose P. W., Finke A. D., Zhuang J., Wang L., Plunkett K. N. Angew. Chem. Int. Ed., 2015, 54(52): 15762.

[16]

Onojima N., Nakamura A., Saito H., Daicho N. J. Cryst. Growth, 2015, 432: 146.

[17]

Ito Y., Virkar A. A., Mannsfeld S., Oh J. H., Toney M., Locklin J., Bao Z. J. Am. Chem. Soc., 2009, 131(26): 9396.

[18]

Wang H., Zhu F., Yang J., Geng Y., Yan D. Adv. Mater., 2007, 19(16): 2168.

[19]

Gundlach D. J., Lin Y. Y., Jackson T. N., Nelson S. F., Schlom D. G. IEEE Electron Device Lett., 1997, 18(3): 87.

[20]

Lin Y. Y., Gundlach D. J., Nelson S. F., Jackson T. N. IEEE Electron Device Lett., 1997, 18(12): 606.

AI Summary AI Mindmap
PDF

103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/