Rational design of Ag nanocubes-reduced graphene oxide nanocomposites for high-performance non-enzymatic H2O2 sensing

Ye Ji , Tianyi Han , Yong Zhang , Ziying Wang , Tong Zhang , Jiyan Leng

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (6) : 946 -950.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (6) : 946 -950. DOI: 10.1007/s40242-017-7118-6
Article

Rational design of Ag nanocubes-reduced graphene oxide nanocomposites for high-performance non-enzymatic H2O2 sensing

Author information +
History +
PDF

Abstract

Ag nanocubes-reduced graphene oxide(AgNCs-rGO) nanocomposite was successfully prepared by an in situ synthesis method, in which AgNCs were loaded onto the surface of rGO during the formation of AgNCs in an ethylene glycol solution. Characterization by X-ray diffraction, UV-Vis spectroscopy, and scanning electron microscopy indicated the successful preparation of the AgNCs-rGO nanocomposite. Most importantly, the AgNCs-rGO nanocomposite exhibited excellent electrocatalytic activity for the reduction of H2O2, leading to a high-performance non-enzymatic H2O2 sensor with a linear detection range and detection limit of approximately 0.1 mmol/L to 70 mmol/L(r=0.999) and 0.58 μmol/L, respectively. Our present work provides a new and highly efficient method for fabricating high-performance electrochemical sensors.

Keywords

H2O2 sensor / Ag nanocube / Reduced graphene oxide

Cite this article

Download citation ▾
Ye Ji, Tianyi Han, Yong Zhang, Ziying Wang, Tong Zhang, Jiyan Leng. Rational design of Ag nanocubes-reduced graphene oxide nanocomposites for high-performance non-enzymatic H2O2 sensing. Chemical Research in Chinese Universities, 2017, 33(6): 946-950 DOI:10.1007/s40242-017-7118-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sun Y., Xia Y. Science, 2002, 298: 2176.

[2]

Braun E., Eichen Y., Sivan U., Ben-Yoseph G. Nature, 1998, 391: 775.

[3]

Zhou D., Cao X., Wang Z., Hao S., Hou X., Qu F., Du G., Asiri A. S., Zheng C., Sun X. Chem-Eur J., 2017, 23: 5214.

[4]

Wang Z., Cao X., Liu D., Hao S., Kong R., Du G., Asiri A.M., Sun X. Chem-Eur J., 2017, 23: 4986.

[5]

Chang G., Luo Y., Lu W., Qin X., Asiri A. M., Al-Youbi A. O., Sun X. Catal. Sci. Technol., 2012, 2: 800.

[6]

Qin X., Luo Y., Lu W., Chang G., Asiri A. M., Al-Youbi A. O., Sun X. Electrochim. Acta, 2012, 79: 46.

[7]

Lu W., Luo Y., Chang G., Sun X. Biosens. Bioelectron., 2011, 26: 4791.

[8]

Qin X., Lu W., Luo Y., Chang G., Sun X. Electrochem. Commun., 2011, 13: 785.

[9]

Tian J., Liu Q., Ge C., Xing Z., Asiri A. M., Al-Youbi A. O., Sun X. Nanoscale, 2013, 5: 8921.

[10]

Liu S., Tian J., Wang L., Li H., Zhang Y., Sun X. Macromolecules, 2010, 43: 10078.

[11]

Wang Y., Yang X., Bai J., Jiang X., Fan G. Biosens. Bioelectron., 2013, 43: 180.

[12]

Lim E. J., Choi S. M., Seo M. H., Kim Y., Lee S., Kim W. B. Electrochem. Commun., 2013, 28: 100.

[13]

Liu S., Tian J., Wang L., Sun X. Carbon, 2011, 49: 3158.

[14]

Novovelov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V. Science, 2004, 306: 666.

[15]

Cui S., Mao S., Wen Z., Chang J., Zhang Y., Chen J. Analyst, 2013, 138: 2877.

[16]

Zhang Z., Zhang J., Zhang B., Tang J. Nanoscale, 2013, 5: 118.

[17]

Zhang Y., Liu S., Wang L., Qin X., Tian J., Lu W., Chang G., Sun X. RSC Adv., 2012, 2: 538.

[18]

Shen J., Shi M., Yan B., Ma H., Li N., Ye M. J. Mater. Chem., 2011, 21: 7795.

[19]

Liu S., Tian J., Wang L., Sun X. J. Nanopart. Res., 2011, 13: 4539.

[20]

Zhao B., Liu Z., Fu W., Yang H. Electrochem. Commun., 2013, 27: 1.

[21]

Zhang M., Wang Z. Appl. Phys. Lett., 2013, 102: 213104.

[22]

Xia Y., Li W., Wang M., Nie Z., Deng C., Yao S. Talanta, 2013, 107: 55.

[23]

Tajabadi M. T., Basirun W. J., Lorestani F., Zakaria R., Baradaran S., Amin Y. M., Mahmoudian M. R., Rezayi M., Sookhakian M. Electrochim. Acta, 2015, 151: 126.

[24]

Yu B., Feng J., Liu S., Zhang T. RSC Adv., 2013, 3: 14303.

[25]

Hummers W. S. Jr., Offeman R. E. J. Am. Chem. Soc., 1958, 80: 1339.

[26]

Skrabalak S. E., Au L., Li X., Xia Y. Nat. Protocols, 2007, 2: 2182.

[27]

Polavarapu L., Liz-Marzán L. M. Nanoscale, 2013, 5: 4355.

[28]

Liang M., Wang L., Su R., Qi W., Wang M., Yu Y., He Z. Catal. Sci. Technol., 2013, 3: 1910.

[29]

Liu S., Tian J., Wang L., Luo Y., Lu W., Sun X. Biosens. Bioelectron., 2011, 26: 4491.

[30]

Liu S., Tian J., Wang L., Luo Y., Sun X. RSC Adv., 2012, 2: 411.

[31]

Zhang Y., Wang Z., Ji Y., Liu S., Zhang T. RSC Adv., 2015, 5: 39037.

AI Summary AI Mindmap
PDF

155

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/