Enhanced antibacterial activities of La/Zn-doped BiNbO4 nanocomposites

Yanhui Hou , Huili Yuan , Hang Chen , Yan Ding , Liangchao Li

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (6) : 917 -923.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (6) : 917 -923. DOI: 10.1007/s40242-017-7113-y
Article

Enhanced antibacterial activities of La/Zn-doped BiNbO4 nanocomposites

Author information +
History +
PDF

Abstract

Bi1−xLa xNbO4 and Bi1−xLa xNbO4 nanocomposites were prepared by a simple coprecipitation method, and their composition, structure and morphology were characterized by modern testing techniques. The antibacterial activities of the as-prepared samples against Staphylococcus aureus, Escherichia coli and Candida albicans were measured by the experiments of powder inhibition zone, inhibition zone diameter and minimum inhibitory concentration under the irradiation of sunlight. The results show that the antibacterial activities of BiNbO4 doped with La and Zn are superior to that of the parent, and the composition of antibacterial agent and their mass ratio have a great influence on the antibacterial activities. Among these, the antibacterial activity of Bi0.96La0.04NbO4 against three bacteria was best and its antibacterial activity to Candida albicans was better than those to the other two kinds.

Keywords

La / Zn / BiNbO4 / Doping / Antibacterial activity

Cite this article

Download citation ▾
Yanhui Hou, Huili Yuan, Hang Chen, Yan Ding, Liangchao Li. Enhanced antibacterial activities of La/Zn-doped BiNbO4 nanocomposites. Chemical Research in Chinese Universities, 2017, 33(6): 917-923 DOI:10.1007/s40242-017-7113-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang C. Y., Lv Z. W., Yan W., Zeng S. J., Wang R. W. Chem. Res. Chinese Universities, 2014, 30(3): 352.

[2]

Yan B., Niu C. H. Chem. Eng. J., 2017, 307: 631.

[3]

Bisio C., Carniato F., Palumbo C., Safronyuk S. L., Starodub M. F., Katsev A. M., Marchese L., Guidotti M. Catal. Today, 2016, 277: 192.

[4]

Tang C. L., Hu D. M., Cao Q. Q., Yan W., Xing B. Appl. Surf. Sci., 2017, 394: 457.

[5]

Guo W. M., Liu H. T. Chem. Res. Chinese Universities, 2017, 33(1): 129.

[6]

Cui D. M., Tian D., Chen S. S., Yuan L. J. J. Mater. Chem. A, 2016, 4(23): 9177.

[7]

Hou Y. H., Feng J. T., Wang Y. C., Li L. C. J. Mater. Sci: Mater. Electron., 2016, 27(7): 6615.

[8]

Krynski M., Wrobel W., Dygas J. R., Krok F., Abrahams I. J. Mater. Chem. A, 2015, 3(43): 21882.

[9]

Gao W. H., Chen G. P., Chen Y. W., Zhang X. S., Yin Y. G., Hu Z. D. J. Chromatogr. B, 2011, 879(3): 291.

[10]

Liu H. H., Chen D. L., Wang Z. Q., Jing H. J., Zhang R. Appl. Catal. B, 2017, 203: 300.

[11]

Wang D. W., Li Y., Puma G. L., Lianos P., Wang C., Wang P. F. J. Hazard. Mater., 2017, 323: 681.

[12]

Yan X., Zhang J. X. Chem. Res. Chinese Universities, 2017, 33(1): 1.

[13]

Zhai H. F., Kong J. Z., Wang A. Z., Li H. J., Zhang T. T., Li A. D., Wu D. Nanoscale Res. Lett., 2015, 10(1): 457.

[14]

Wang B. C., Nisar J., Pathak B., Kang T. W., Ahuja R. Appl. Phys. Lett., 2012, 100(18): 182102.

[15]

He Y., Zhang Y. H., Huang H. W., Tian N., Guo Y. X., Luo Y. Collo-ids and Surfaces A: Physicochem. Eng. Aspects, 2014, 462: 131.

[16]

Almeida C. G., Araujo R. B., Yoshimura R. G., Mascarenhas A. J. S., Silva A. F. D., Araujo C. M., Silva L. A. Int. J. Hydrogen Energ., 2014, 39(3): 1220.

[17]

Zhai H. F., Shang S. Y., Zheng L. Y., Li P. P., Li H. Q., Luo H. Y., Kong J. Z. Nanoscale Res. Lett., 2016, 11(1): 383.

[18]

Zhai H. F., Li A. D., Kong J. Z., Li X. F., Zhao J., Guo B. L., Yin J., Li Z. S., Wu D. J. Solid State Chem., 2013, 202: 6.

[19]

Xiang Z. B., Wang Y., Ju P., Long Y., Zhang D. J. Alloy. Compd., 2017, 721(15): 622.

[20]

Fu H. L., Zhang W., Zhang H., Song S. B., Li W. J. Inorg. Mater., 2016, 31(5): 479.

[21]

Huang L., Wu J. J., Zheng L., Qian H. S., Xue F., Wu Y. C., Pan D. D., Samuel B., Chen W. Anal. Chem., 2013, 85(22): 10842.

[22]

Wang H., Wang J. Y., Wu X. P., Shen H. Y., Luo Y., Dai H. F., Mei W. L. Chem. Res. Chinese Universities, 2015, 31(1): 38.

[23]

Liang X. X., Sun M. X., Li L. C., Qiao R., Chen K. Y., Xiao Q. S., Xu F. Dalton Trans., 2012, 41(9): 2804.

[24]

Meng X. C., Zhang Z. S. J. Mol. Catal. A-Chem., 2016, 423: 533.

[25]

Yin S., Fan W. M., Di J., Wu T., Yan J. X., He M. Q., Xia J. X., Li H. M. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2017, 513: 160.

[26]

Yu R. J., Fan A. P., Yuan M. S., Li T. B., Wang J. Y. Phys. Chem. Chem. Phys., 2016, 18(34): 23702.

[27]

Ge W., Liu X. L., Ye J., Li Q. W., Jiang H., Wang X. M. Sci. China Chem., 2015, 58(4): 634.

[28]

Chandraboss V. L., Kamalakkannan J., Senthilvelan S. Appl. Surf. Sci., 2016, 387: 944.

[29]

Jin J. F., Liu W. Y., Zhang W. Y., Chen Q. H., Yuan Y. B., Yang L. D., Wang Q. T. J. Nanopart. Res., 2014, 16(10): 2658.

[30]

Pal S., Yoon E. J., Park S. H., Choi E. C., Song J. M. J. Antimicrob. Chemoth., 2010, 65(10): 2134.

[31]

Liu J. X., Li R., Wang Y. F., Wang Y. W., Zhang X. C., Fan C. M. J. . Alloy. Compd., 2017, 693: 543.

[32]

Hu J. L., Yang Q. H., Lin H., Ye Y. P., He Q., Zhang J. N., Qian H. S. Nanoscale, 2013, 5(14): 6327.

[33]

Zhang F., Zhang C. L., Wang W. N., Cong H. P., Qian H. S. Chem-SusChem, 2016, 9(12): 1449.

[34]

Zhu W. Y., Liu J. C., Yu S. Y., Zhou Y., Yan X. L. J. Hazard. Mater., 2016, 318: 407.

[35]

Zhang F., Zhang C. L., Peng H. Y., Cong H. P., Qian H. S. Part. Part. Syst. Char., 2016, 33(5): 248.

AI Summary AI Mindmap
PDF

154

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/