Design of L-cysteine functionalized Au@SiO2@Fe3O4/nitrogen-doped graphene nanocomposite and its application in electrochemical detection of Pb2+

Jing Nie , Bin He , Yanmei Cheng , Wei Yin , Changjun Hou , Danqun Huo , Linlin Qian , Yunan Qin , Huanbao Fa

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (6) : 951 -957.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (6) : 951 -957. DOI: 10.1007/s40242-017-7101-2
Article

Design of L-cysteine functionalized Au@SiO2@Fe3O4/nitrogen-doped graphene nanocomposite and its application in electrochemical detection of Pb2+

Author information +
History +
PDF

Abstract

A novel magnetic electrochemical sensor was designed for determination of lead ions based on gold nanoparticles(AuNPs)@SiO2@Fe3O4/nitrogen-doped graphene(NG) composites functionalized with L-cysteine. The Au@SiO2@Fe3O4/NG was synthesized by the electrostatic adsorption between AuNPs and SiO2-coated Fe3O4 NPs(SiO2@Fe3O4) and the amide bond between Au@SiO2@Fe3O4 and NG. L-Cysteine was successfully functionalized on the surface of Au@SiO2@Fe3O4/NG nanocomposites via the S―Au bond between L-cysteine and AuNPs. Owing to numerous active sites in L-cysteines and high conductivity of Au@SiO2@Fe3O4/NG composites, the proposed electrochemical sensor exhibited a well-distributed nanostructure and high responsivity toward Pb(II). The sensor linearly responded to Pb2+ concentration in the range of 5―80 μg/L with a detection limit of 0.6 μg/L, indicating that this L-cysteine functionalized Au@SiO2@Fe3O4/NG composite could be a promising candidate material for the detection of Pb2+.

Keywords

Electrochemical sensor / Lead / Nitrogen-doped graphene / Au@SiO2@Fe3O4 / L-Cysteine

Cite this article

Download citation ▾
Jing Nie, Bin He, Yanmei Cheng, Wei Yin, Changjun Hou, Danqun Huo, Linlin Qian, Yunan Qin, Huanbao Fa. Design of L-cysteine functionalized Au@SiO2@Fe3O4/nitrogen-doped graphene nanocomposite and its application in electrochemical detection of Pb2+. Chemical Research in Chinese Universities, 2017, 33(6): 951-957 DOI:10.1007/s40242-017-7101-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lim H. S., Lee J. S., Chon H. T., Sager M. J. Geochem. Explor., 2008, 96(2/3): 223.

[2]

Cheng H., Hu Y. Environ. Pollut., 2010, 158(158): 1134.

[3]

Bontidean I., Ahlqvist J., Mulchandani A., Chen W., Bae W., Mehra R. K., Mortari A., Csoregi E. B.i.o.s.e.n.s. Bioelectron, 2003, 18(5/6): 547.

[4]

Atsuo I. J. Environ. Sci. China, 2009, 21(8): 1118.

[5]

Soliman M. M., Baiomy A. A., Yassin M. H. Biol. Trace. Elem. Res., 2015, 167(1): 91.

[6]

Zhang H., Wei K., Zhang M., Liu R., Chen Y. J. Photoch. Photobio B, 2014, 136(7): 46.

[7]

Soylak M., Elçi L., Dogan M. J. Trace Microprobe T., 1999, 17(2): 149.

[8]

Poitrasson F., Chenery S., Shepherd T. J. Geochim. Cosmochim. Ac., 2006, 64(19): 3283.

[9]

Liu J., Lu Y. J. Am. Chem. Soc., 2004, 126(39): 12298.

[10]

Xiang Y., Tong A., Lu Y. J. Am. Chem. Soc., 2009, 131(42): 15352.

[11]

Zhu X., Lin Z., Chen L., Qiu B., Chen G. Chem. Commun., 2009, 40: 6050.

[12]

Iost R. M., Crespilho F. N. Biosens. Bioelectron., 2012, 31(1): 1.

[13]

Xu X., Duan G., Li Y., Liu G., Wang J., Zhang H., Dai Z., Cai W. Acs Appl. Mater. Inter., 2013, 6(1): 65.

[14]

Shao Y., Wang J., Wu H., Liu J., Aksay I. A., Lin Y. Electroanal., 2010, 22(10): 1027.

[15]

Lian P., Zhu X., Xiang H., Zhong L., Yang W., Wang H. Electrochim. Acta, 2010, 56(2): 834.

[16]

Liang Y., Li Y., Wang H., Zhou J., Wang J., Regier T., Dai H. Nat. Mater., 2011, 10(10): 780.

[17]

Wu Z. S., Ren W., Wen L., Gao L., Zhao J., Chen Z., Zhou G., Li F., Cheng H. M. Acs Nano, 2010, 4(6): 3187.

[18]

Wang P., Mai Z., Zong D., Li Y., Zou X. Biosens. Bioelectron., 2009, 24(11): 3242.

[19]

Zhang Y., Li L., Yang H., Ding Y., Su M., Zhu J., Yan M., Yu J., Song X. Rsc Adv., 2013, 3(34): 14701.

[20]

Shore M. S., Wang J., Johnston-Peck A. C., Oldenburg A. L., Tracy J. B. Small, 2011, 7(2): 230.

[21]

Feifel S. C., Lisdat F. J. Nanobiotecg., 2011, 9(9): 177.

[22]

Altintas Z., Kallempudi S. S., Sezerman U., Gurbuz Y. Sensor. Ac-tuat. B: Chem., 2012, 174(11): 187.

[23]

Fei J., Dou W., Zhao G. Rsc Adv., 2015, 5(91): 74548.

[24]

Han Q., Xin S., Zhu W., Zhu C., Zhou X., Jiang H. Biosens. Bio-electron., 2015, 79: 180.

[25]

Cheng Y. M., Fa H. B., Yin W., Hou C. J., Huo D. Q., Liu F. M., Zhang Y., Chen C. J. Solid State Electr., 2015, 20(2): 327.

[26]

Deng H., Li X., Peng Q., Wang X., Chen J., Li Y. Angew. Chem. Int. Edit., 2005, 44(18): 2782.

[27]

Daneshpour M., Moradi L. S., Izadi P., Omidfar K. Biosens. Bio-electron., 2016, 77: 1095.

[28]

Xiong S., Wang M., Cai D., Li Y., Gu N., Wu Z. Anal. Lett., 2013, 46: 912.

[29]

Bouabdalaoui L., Ouay B., Coradin L., Coradin T., Laberty-Robert C. International Journal of Electrochemistry, 2015, 2015(2): 1.

[30]

Wang D., Ke Y., Guo D., Guo H. Sensor. Actuat. B: Chem., 2015, 216: 504.

[31]

Jarczewska M., Kierzkowska E., Ziólkowski R., Górski L., Mali-nowska E. Bioelectrochemistry, 2014, 101: 35.

[32]

Yang D., Wang L., Chen Z., Megharaj M., Naidu R. Microchim. Ac-ta, 2014, 181(11/12): 1199.

[33]

Fan F., Dou J., Ding A., Zhang K., Wang Y. Analytical Sciences the International Journal of the Japan Society for Analytical Chemistry, 2013, 29(5): 571.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/