Fluorine-free ionic liquid based on thiocyanate anion with propylene carbonate as electrolytes for supercapacitors: Effects of concentration and temperature

Lifeng Zhang , Suqing Du , Qiaolan Song , Yi Liu , Shouwu Guo

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (5) : 779 -784.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (5) : 779 -784. DOI: 10.1007/s40242-017-7100-3
Article

Fluorine-free ionic liquid based on thiocyanate anion with propylene carbonate as electrolytes for supercapacitors: Effects of concentration and temperature

Author information +
History +
PDF

Abstract

High performance supercapacitors were constructed using ionic liquid 1-ethyl-3-methylimidazolium thiocyanate(EmimSCN)-based electrolyte with chemically reduced graphene oxide(CRGO) as electrodes. Propylene carbonate(PC) was selected as the solvent due to its stable physical and electrochemical properties. Then, in-depth study of the concentration and temperature effects on the electrochemical properties of the EmimSCN/PC electrolyte was carried out. Electrochemical measurements revealed that 2.0 mol/L EmimSCN/PC electrolyte delivered good electrochemical performance(131 F/g of the specific capacity after 3000 cycles at room temperature). Moreover, the assembled supercapacitors exhibited good capacitive behavior at an extending temperature(397 F/g of the specific capacity after 3000 cycles at 50 °C), demonstrating that the EmimSCN/PC electrolyte is a promising candidate for safe high-power supercapacitors.

Keywords

Electrolyte / Supercapacitor / Ionic liquid / Chemically reduced graphene oxide / Capacitance

Cite this article

Download citation ▾
Lifeng Zhang, Suqing Du, Qiaolan Song, Yi Liu, Shouwu Guo. Fluorine-free ionic liquid based on thiocyanate anion with propylene carbonate as electrolytes for supercapacitors: Effects of concentration and temperature. Chemical Research in Chinese Universities, 2017, 33(5): 779-784 DOI:10.1007/s40242-017-7100-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MacFarlane D. R., Tachikawa N., Forsyth M., Pringle J. M., Howlett P. C., Elliott G. D., Angell C. A. Energy Environ. Sci., 2014, 7: 232.

[2]

Huang Y., Liang J. J., Chen Y. S. Small, 2012, 8: 1805.

[3]

Georgakilas V., Tiwari J. N., Kemp K. C., Perman J. A., Bourlinos A. B., Kim K. S., Zbori R. Chem. Rev., 2016, 116: 5464.

[4]

Wang H. Z., Shi Y. L., Li Z. X., Zhang W. G., Yao S. W. Chem. Res. Chinese Universities, 2014, 30(4): 650.

[5]

Chen Z. X., Lu H. B. Chem. J. Chinese Universities, 2013, 34(9): 2020.

[6]

Lei Z. B., Liu Z. H., Wang H. J., Sun X. X., Lu L., Zhao X. S. J. Mater. Chem. A, 2013, 1: 2313.

[7]

Vivekchand S., Rout C., Subrahmanyam K., Govindaraj A., Rao C. J. Chem. Sci., 2008, 120: 9.

[8]

Lin Z. F., Taberna P. L., Simon P. Electrochimica Acta, 2016, 206: 446.

[9]

Pohlmann S., Olyschläger T., Goodrich P., Vicente J. A., Jacquemin J., Balducci A. Electrochimica Acta, 2015, 153: 426.

[10]

Huang P. L., Luo X. F., Peng Y. Y., Pu N. W., Ger M. D., Yang C. H., Wu T. Y., Chang J. K. Electrochimica Acta, 2015, 161: 371.

[11]

Liu C. G., Yu Z. N., Neff D., Zhamu A., Jang B. Z. Nano Lett., 2010, 10: 4863.

[12]

Tooming T., Thomberg T., Kurig H., Jänes A., Lust E. J. Power Sources, 2015, 280: 667.

[13]

Liu W. W., Yan X. B., Lang J. W., Xue Q. J. J. Mater. Chem., 2012, 22: 8853.

[14]

Zhong C., Deng Y. D., Hu W. B., Qiao J. L., Zhang L., Zhang J. J. Chem. Soc. Rev., 2015, 44: 7484.

[15]

Leones R., Costa C. M., Machado A. V., Esperança J. M. S. S., Silva M. M. L., Méndez S. Electroanal., 2014, 26: 1.

[16]

Mondal A., Balasubramanian S. J. Phys. Chem. B, 2015, 119: 11041.

[17]

Gonfa G., Bustam M. A., Muhammad N., Khan A. S. Ind. Eng. Chem. Res., 2015, 54: 12428.

[18]

Pringle J. M., Golding J., Forsyth C. M., Deacon G. B., Forsyth M., MacFarlane D. R. J. Mater. Chem., 2002, 12: 3475.

[19]

Chaban V. Chem. Phys. Lett., 2015, 618: 89.

[20]

Zhang Q. G., Zhang X. Y., Li M. C., Wu X. Y., Jin Z. X. Electronic Components and Materials, 2014, 33: 19.

[21]

Chang J. K., Lee M. T., Tsai W. T., Deng M. J., Cheng H. F., Sun I. W. Langmuir, 2009, 25: 11955.

[22]

Zhang J. L., Yang H. J., Shen G. X., Cheng P., Zhang J. Y., Guo S. W. Chem. Commum., 2010, 46: 1112.

[23]

Fu R. R., Luo M., Ma Y. H., Yang S. Chem. J. Chinese Universities, 2016, 37(8): 1485.

[24]

Lu W. J., Huang S. Z., Miao L., Liu M. X., Zhu D. Z., Li L. C., Duan H., Xu Z. J., Gan L. H. Chinese Chem. Lett., 2017, 28: 1324.

[25]

Li N., Lv T., Yao Y., Li H. L., Liu K., Chen T. J. Mater. Chem. A, 2017, 5: 3267.

[26]

Liu M. X., Ma X. M., Gan L. H., Xu Z. J., Zhu D. Z., Chen L. W. J. Mater. Chem. A, 2014, 2: 17107.

[27]

Elzbieta F. Phys. Chem. Chem. Phys., 2007, 9: 1774.

[28]

Lei Z. B., Christov N., Zhang L. L., Zhao X. S. J. Mater. Chem., 2011, 21: 2274.

[29]

Dagousset L., Nguyen G. T. M., Vidal F., Galindo C., Aubert P. H. RSC Advances, 2015, 5: 13095.

[30]

Kühnel R. S., Böckenfeld N., Passerini S., Winter M., Balducci A. Electrochimica Acta, 2011, 56: 4092.

[31]

Zhang L. L., Zhao X., Stoller M. D., Zhu Y., Ji H., Murali S., Wu Y., Perales S., Clevenger B., Ruoff R. S. Nano Lett., 2012, 12: 1806.

[32]

Liu W. W., Yan X. B., Lang J. W., Xue Q. J. J. Mater. Chem., 2011, 21: 13205.

[33]

Shi M. J., Kou S. Z., Yan X. B. Chem. Sus. Chem., 2014, 7: 3053.

[34]

Hung K., Masarapu C., Ko T., Wei B. Q. J. Power Sources, 2009, 193: 944.

[35]

Balducci A., Dugas R., Taberna P. L., Simon P., Plée D., Mastragos-tino M., Passerini S. J. Power Sources, 2007, 165: 922.

[36]

Lazzari M., Soavi F., Mastragostino M. J. Power Sources, 2008, 178: 490.

[37]

Anouti M., Timperman L., Elhilali M., Boisset A., Galiano H. J. Phys. Chem. C, 2012, 116: 9412.

AI Summary AI Mindmap
PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/