Preparation of β-cyclodextrin/Fe3O4/polyvinylpyrrolidone composite magnetic microspheres for the adsorption of methyl orange

Qingbo Si , Qian Wen , Qingbiao Yang , Yan Song , Yaoxian Li

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (6) : 1012 -1016.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (6) : 1012 -1016. DOI: 10.1007/s40242-017-7083-0
Article

Preparation of β-cyclodextrin/Fe3O4/polyvinylpyrrolidone composite magnetic microspheres for the adsorption of methyl orange

Author information +
History +
PDF

Abstract

Magnetic microspherical β-cyclodextrin(CD)/Fe3O4@polyvinylpyrrolidone(PVP) particles, in which embedded Fe3O4 particles were coated by β-CD/glutaraldehyde crosslinked PVP, were synthesized via electrostatic spray and thermal crosslinking technologies. The magnetic microspheres were characterized by infrared spectroscopy, X-ray diffraction, scanning electron microscopy(SEM) and magnetic measurements, and the adsorption performance of the β-CD/Fe3O4@PVP composite nanoparticles for methyl orange was studied. The results show that the β-CD/Fe3O4@PVP microspheres could be quickly separated from the adsorption system under an external magnetic field within 30 s and that the adsorption capacity of the microspheres for methyl orange reaches greater than 90%, with a maximum adsorption quantity of 47.62 mg/g.

Keywords

Electrospray / β-Cyclodextrin / Adsorption / Methyl orange / Magnetic microsphere

Cite this article

Download citation ▾
Qingbo Si, Qian Wen, Qingbiao Yang, Yan Song, Yaoxian Li. Preparation of β-cyclodextrin/Fe3O4/polyvinylpyrrolidone composite magnetic microspheres for the adsorption of methyl orange. Chemical Research in Chinese Universities, 2017, 33(6): 1012-1016 DOI:10.1007/s40242-017-7083-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hao O. J., Kim H., Chiang P. C. Critical Reviews in Environmen-tal Science and Technology, 2000, 30(4): 449.

[2]

Hu E. L., Wu X. B., Shang S. M., Tao X. M., Jiang S. X., Gan L. Journal of Cleaner Prodution, 2016, 112(5): 4710.

[3]

Pietrelli L., Francolini L., Piozzi A. Separation Science and Technology, 2015, 50(8): 1101.

[4]

Ramana D. K., Reddy D., Kumar B., Seshaiah K., Rao C. Separa-tion Science and Technology, 2013, 48(3): 403.

[5]

Zhu S. M., Yang N., Zhang D. Materials Chemistry and Physcics, 2009, 113(2/3): 784.

[6]

Makarchuk O. V., Dontsova T. A., Astrelin I. M. Nanoscale Research Letters, 2016, 11: 161.

[7]

Shen H. M., Wu H. K., Ji H. B., Shi H. X. Chinese Journal of Organic Chemistry, 2014, 34(4): 630.

[8]

Teja A. S., Koh P. Y. Progress in Crystal Growth and Characteri-zation of Materials, 2009, 55(1/2): 22.

[9]

Zhang J. X., Li B. S., Yang W. H., Liu J. J., Li B. S. Industrial Engineering Chemistry Research, 2014, 53(26): 10629.

[10]

Kim G., Park J., Park S. J. Polym. Sci., Part B: Polym. Phys., 2007, 45(15): 2038.

[11]

Xu F., Cui F. Z., Jiao Y. P., Meng Q. Y., Wang X. P., Cui X. Y. J. Mater. Sci. Mater. Med., 2009, 20(6): 1331.

[12]

Xiao N., Wen Q., Liu Q. W., Yang Q. B., Li Y. X. Chem. Res. Chinese Universities, 2014, 30(6): 1057.

[13]

Loscertales I. G., Barrero A., Guerrero I., Cortijo R. Science, 2002, 295(5560): 1695.

[14]

Pokorny M., Novak J., Rebicek J., Klemesl J., Velebnyl V. Nano-materials and Nanotechnology, 2015, 5(17): 1.

[15]

Zamani M., Prabhakaran M. P., Ramakrishna S. International Journal of Nanomedicine, 2013, 8(1): 2297.

[16]

Ling X. Y., Phang I. Y., Vancso G. J., Huskens J. Langmuir, 2009, 25: 3260.

[17]

Ding L., Lee T., Wang C. H. Journal of Controlled Release, 2005, 102(2): 395.

[18]

Mendes L. C., Rodrigues R. C., Silva E. P. Journal of Thermal Analysis and Calorimetry, 2010, 101(3): 899.

[19]

Shamim N., Hong L., Hidajat K., Uddin M. S. Journal of Collid and Interface Science, 2006, 304(1): 1.

[20]

Singh K., Ingole P. G., Bajaj H. C., Gupta H. Desalination, 2012, 298: 131.

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/