Swelling process of thin polymer film studied via in situ spectroscopic ellipsometry

Lin Xu , Zhiming Zou , Huanhuan Zhang , Tongfei Shi

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (5) : 833 -838.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (5) : 833 -838. DOI: 10.1007/s40242-017-7075-0
Article

Swelling process of thin polymer film studied via in situ spectroscopic ellipsometry

Author information +
History +
PDF

Abstract

The swelling process of thin polystyrene films in quantity was studied in this paper using the in situ spectroscopic ellipsometry. We systematically investigated the influence of film thickness on the swelling process of thin polystyrene films. The results show that in the case of high M w polystyrene(M w=400000), the curve of the swelling degree as a function of time discloses that the relaxation of the long polymer chains accompanies the diffusion of acetone molecules. The swelling process is via the Fickian relaxation mechanism. Both the values of the equilibrium swelling degree and the diffusion coefficient of acetone molecules in the polystyrene film decrease as the film thickness reduces under confinement. However, in the case of low M w PS(M w=4100), the dewetting process is so fast before the equilibrium of swelling that the whole swelling process cannot be observed.

Keywords

Thin polymer film / Solvent swelling / Dewetting

Cite this article

Download citation ▾
Lin Xu, Zhiming Zou, Huanhuan Zhang, Tongfei Shi. Swelling process of thin polymer film studied via in situ spectroscopic ellipsometry. Chemical Research in Chinese Universities, 2017, 33(5): 833-838 DOI:10.1007/s40242-017-7075-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li H., Wu Y. S., Wang X. D., Kong Q. H., Fu H. B. Chem. Commun., 2014, 50(75): 11000.

[2]

Pan L. J., Chortos A., Yu G. H., Wang Y. Q., Isaacson S., Allen R., Shi Y., Dauskardt R., Bao Z. N. Nat. Commun., 2014, 5: 3002.

[3]

Gracias D. H. Curr. Opin. Chem. Eng., 2013, 2(1): 112.

[4]

de Blase C. R., Hernández-Burgos K., Rotter J. M., Fortman D. J., Abreu D. D. S., Timm R. A., Diógenes I. C. N., Kubota L. T., Héctor D., Abruña H. D., Dichtel W. R. Angew. Chem. Int. Edit., 2015, 54(45): 13225.

[5]

He Y. H., Hong W., Li Y. N. J. Mater. Chem. C, 2014, 2(41): 8651.

[6]

Ediger M. D., Forrest J. A. Macromolecules, 2014, 47(2): 471.

[7]

Vanroy B., Wübbenhorst M., Napolitano S. ACS Macro Lett., 2013, 2(2): 168.

[8]

Nguyen H. K., Fujinami S., Nakajima K. Polymer, 2016, 87: 114.

[9]

Tan A. W., Torkelson J. M. Polymer, 2016, 82: 327.

[10]

Sen M. N., Jiang N. S., Cheung J., Endoh M. K., Koga T., Kawaguchi D., Tanaka K. ACS Macro Lett., 2016, 5(4): 504.

[11]

Unni A. B., Vignaud G., Bal J. K., Delorme N., Beuvier T., Thomas S., Grohens Y., Gibaud A. Macromolecules, 2016, 49(5): 1807.

[12]

Balko J., Rinscheid A., Wurm A., Schick C., Lohwasser R. H., Thelakkat M., Thurn-Albrecht T. J. Polym. Sci. Part B: Polym. Phys., 2016, 54(18): 1791.

[13]

Asada M., Jiang N. S., Sendogdular L., Sokolov J., Endoh M. K., Koga T., Fukuto M., Yang L., Akgun B., Dimitriou M., Satija S. Soft Matter, 2014, 10(34): 6392.

[14]

Napolitano S., Wübbenhorst M. Nat. Commun., 2011, 2: 260.

[15]

Xu L., Zhang H. H., Shi T. F. Chem. J. Chinese Universities, 2016, 37(1): 174.

[16]

Reiter G., Hamieh M., Damman P., Sclavons S., Gabriele S., Vilmin T. Raphaël E., Nat. Meter., 2005, 4(10): 754.

[17]

Roth C. B., Pye J. E., Baglay R. R. Polymer, Glasses, CRC Press, 2016, 181.

[18]

Yang Y. H., Bolling L., Priolo M. A., Grunlan J. C. Adv. Mater., 2013, 25(3): 503.

[19]

Buvailo A., Xing Y. J., Hines J., Borguet E. Sensor. Actuat. B, Chem., 2011, 156: 444.

[20]

Sharma S., Hussain S., Singh S., Islam S. S. Sensor. Actuat. B, Chem., 2014, 194: 213.

[21]

Nicolais L., Drioli E., Hopfenberg H. B., Tidone D. Polymer, 1977, 18: 1137.

[22]

Visser T., Wessling M. Macromolecules, 2007, 40(14): 4992.

[23]

Burgess S. K., Mikkilineni D. S., Yu D. B., Kim D. J., Mubarak C. R., Kriegel R. M., Koros W. J. Polymer, 2014, 55: 6861.

[24]

Burgess S. K., Mikkilineni D. S., Yu D. B., Kim D. J., Mubarak C. R., Kriegel R. M., Koros W. J. Polymer, 2014, 55: 6870.

[25]

Potreck J., Uyar F., Sijbesma H., Nijmeijer K., Stamatialis D. Wes-sling M., Phys. Chem. Chem. Phys., 2009, 11(2): 298.

[26]

Hopfenberg H. B. J. Membr. Sci., 1978, 3(1): 215.

[27]

Durning C. J., Hassan M. M., Tong H. M., Lee K. W. Macromole-cules, 1995, 28(12): 4234.

[28]

Okamoto K., Tanihara N., Watanabe H., Tanaka K., Kita H., Naka-mura A., Kusuki Y., Nakagawa K. J. Polym. Sci. Part B: Polym. Phys., 1992, 30(11): 1223.

[29]

Marcon V., van der Vegt N. F. A. Soft Matter, 2014, 10(45): 9059.

[30]

Ogieglo W., Wormeester H., Wessling M., Benes N. E. Macromol. Chem. Phys., 2013, 214(21): 2480.

[31]

Hori K., Matsuno H., Tanaka K. Soft Matter, 2011, 7(21): 10319.

[32]

Bal J. K., Beuvier T., Chebil M. S., Vignaud G., Grohens Y., Sanyal M. K., Gibaud A. Macromolecules, 2014, 47(24): 8738.

[33]

Gensel J., Dewald I., Erath J., Betthausen E., Müller A. H. E., Fery A. Chem. Sci., 2013, 4(1): 325.

[34]

Berens A. R. Polymer, 1977, 18: 697.

[35]

Chen W. L., Shull K. R., Papatheodorou T., Styrkas D. A., Keddie J. L. Macromolecules, 1999, 32(1): 136.

[36]

Ogieglo W., Wormeester H., Wessling M., Benes N. E. Polymer, 2013, 54: 341.

[37]

Berens A. R., Hopfenberg H. B. Polymer, 1978, 19: 489.

[38]

Zettl U., Knoll A., Tsarkova L. Langmuir, 2010, 26(9): 6610.

[39]

Forrest J. A., Dalnoki-Veress K., Dutcher J. R. Phys. Rev. E, 1997, 56(5): 5705.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/