PDF
Abstract
Graphene oxide(GO), as an important derivative of graphene, could be considered as a super aromatic molecule decorated with a range of reactive oxygen-containing groups on its surface, which endows graphene high reactivity with other molecules. In our previous work, we demonstrated that GO sheets were cut into small pieces(graphene quantum dots, GQDs) by oxidative free radicals(hydroxyl radical HO• or oxygen radical [O]) under UV irradiation. It is notable that reactions involving free radicals are influenced by reaction conditions pronouncedly. However, researches on details about reactions of GO with free radicals have not been reported thus far. In this work, the effects of different factors on the photo-Fenton reaction of GO were studied. It is demonstrated that the reaction rate is closely related to the concentration of free radicals. It is speculated that through the optimization of reaction conditions, the reaction of graphene with free radicals could carry out efficiently for further applications.
Keywords
Graphene oxide
/
Free radical
/
Graphene quantum dot
Cite this article
Download citation ▾
Xuejiao Zhou, Liangyou Xu.
Insight into the reaction mechanism of graphene oxide with oxidative free radical.
Chemical Research in Chinese Universities, 2017, 33(5): 689-694 DOI:10.1007/s40242-017-7070-5
| [1] |
Qi P., Wang Z., Wang R., Xu Y., Zhang T. Chem. Res. Chinese Universities, 2016, 32(6): 924.
|
| [2] |
Karagiannidis P. G., Hodge S. A., Lombardi L., Tomarchio F., Decorde N., Milana S., Goykhman I., Su Y., Mesite S. V., Johnstone D. N., Leary R. K., Midgley P. A., Pugno N. M., Torrisi F., Ferrari A. C. ACS Nano, 2017, 11(3): 2742.
|
| [3] |
Zheng S., Li Z., Wu Z. S., Dong Y., Zhou F., Wang S., Fu Q., Sun C., Guo L., Bao X. ACS Nano, 2017, 11(4): 4009.
|
| [4] |
Geim A. K., Novoselov K. S. Nat. Mater., 2007, 6: 183.
|
| [5] |
Stankovich S., Dikin D. A., Dommett G. H. B., Kohlhaas K. M., Zimney E. J., Stach E. A., Piner R. D., Nguyen S. T., Ruoff R. S. Nature, 2006, 442(7100): 282.
|
| [6] |
Zhu Y., Murali S., Cai W., Li X., Suk J. W., Potts J. R., Ruoff R. S. Adv. Mater., 2010, 22(35): 3906.
|
| [7] |
Huang X., Yin Z., Wu S., Qi X., He Q., Zhang Q., Yan Q., Boey F., Zhang H. Small, 2011, 7(14): 1876.
|
| [8] |
Sun Y., Wu Q., Shi G. Energy Environ. Sci., 2011, 4(4): 1113.
|
| [9] |
Zhuo S., Shao M., Lee S.T. ACS Nano, 2012, 6: 1059.
|
| [10] |
Mueller M. L., Yan X., McGuire J. A., Li L. S. Nano Lett., 2010, 10(7): 2679.
|
| [11] |
Wu F., Xu F., Chen L., Jiang B., Sun W., Wei X. Chem. Res. Chinese Universities, 2016, 32(3): 468.
|
| [12] |
Jin Y. X., Jia W. P., Liang D. X., Li F., Li R. R., Zheng M. M., Gao W. Y., Ni J. M., Hu J. J., Wu T. H. Chem. J. Chinese Universities, 2017, 38(4): 653.
|
| [13] |
Park S., Ruoff R. S. Nat. Nanotech., 2009, 4(4): 217.
|
| [14] |
Eda G., Chhowalla M. Adv. Mater., 2010, 22(22): 2392.
|
| [15] |
Compton O. C., Nguyen S. T. Small, 2010, 6(6): 711.
|
| [16] |
Zhou X., Zhang J., Wu H., Yang H., Zhang J., Guo S. J. Phys. Chem. C, 2011, 115: 11957.
|
| [17] |
Bourlinos A. B., Gournis D., Petridis D., Szabó T., Szeri A., Dékány I. Langmuir, 2003, 19: 6050.
|
| [18] |
Si Y., Samulski E. Nano Lett., 2008, 8: 1679.
|
| [19] |
Bekyarova E., Itkis M. E., Ramesh P., Berger C., Sprinkle M., Heer W. A., Haddon R. C. J. Am. Chem. Soc., 2009, 131: 1336.
|
| [20] |
Niyogi S., Bekyarova E., Itkis M. E., McWilliams J. L., Hamon M. A., Haddon R. C. J. Am. Chem. Soc., 2006, 128: 7720.
|
| [21] |
Zhou X., Zhang Y., Wang C., Wu X., Yang Y., Zheng B., Wu H., Guo S., Zhang J. ACS Nano, 2012, 6: 6592.
|
| [22] |
Zhou X., Guo S., Zhong P., Xie Y., Li Z., Ma X. RSC Adv., 2016, 6: 54644.
|
| [23] |
Ponomarenko L. A., Schedin F., Katsnelson M. I., Yang R., Hill E. W., Novoselov K. S., Geim A. K. Science, 2008, 320(5874): 356.
|
| [24] |
Ritter K. A., Lyding J. Nat. Mater., 2009, 8: 235.
|
| [25] |
Liu X. L., Hug D., Vandersypen L. M. Nano Lett., 2010, 10(5): 1623.
|
| [26] |
Shen J., Zhu Y., Yang X., Li C. Chem. Commun., 2012, 48(31): 3686.
|
| [27] |
Zhang Z., Zhang J., Chen N., Qu L. Energy Environ. Sci., 2012, 5(10): 8869.
|
| [28] |
Yan X., Cui X., Li B., Li L. S. Nano Lett., 2010, 10(5): 1869.
|
| [29] |
Liu Z., Robinson J. T., Sun X., Dai H. J. Am. Chem. Soc., 2008, 130: 10876.
|
| [30] |
Hong H., Yang K., Zhang Y., Engle J. W., Feng L., Yang Y., Nayak T. R., Goel S., Bean J., Theuer C. P., Barnhart T. E., Liu Z., Cai W. ACS Nano, 2012, 6: 2361.
|
| [31] |
Zhao J., Chen G., Zhu L., Li G. Electrochem. Commun., 2011, 13(1): 31.
|
| [32] |
Hou H., Banks C. E., Jing M., Zhang Y., Ji X. Adv. Mater., 2015, 27(47): 7861.
|
| [33] |
Tetsuka H., Nagoya A., Fukusumi T., Matsui T. Adv. Mater., 2016, 28(23): 4632.
|
| [34] |
Bai H., Jiang W., Kotchey G. P., Saidi W. A., Bythell B. J., Jarvis J. M., Marshall A. G., Robinson R. A., Star A. J. Phys. Chem. C, 2014, 118(19): 10519.
|
| [35] |
Cheng M. M., Ma W. H., Li J., Huang Y. P., Zhao J. C. Environ. Sci. Technol., 2004, 38: 1569.
|
| [36] |
Pera-Titus M., Garci´a-Molina V., Baños M. A., Giménez J., Esplugas S. Applied Catalysis B: Environmental, 2004, 47(4): 219.
|
| [37] |
Ikehata K., El-Din M. G. J. Environ. Eng. Sci., 2006, 5(2): 81.
|
| [38] |
Wang H., Tian H., Wang S., Zheng W., Liu Y. Mater. Lett., 2012, 78: 170.
|
| [39] |
Sun X., Luo D., Liu J., Evans D. G. ACS Nano, 2010, 4: 3381.
|