Density functional theoretical studies on effect of intramolecular hydrogen bonds on reduction of nitrophenols

Hongmei Zhang , Yan Liu , Fangping Ma , Wei Qiu , Bo Lei , Jinyou Shen , Xiuyun Sun , Weiqing Han , Jiansheng Li , Lianjun Wang

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (5) : 785 -793.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (5) : 785 -793. DOI: 10.1007/s40242-017-7066-1
Article

Density functional theoretical studies on effect of intramolecular hydrogen bonds on reduction of nitrophenols

Author information +
History +
PDF

Abstract

Intramolecular hydrogen bonds(IMHBs) can lead to different physicochemical characteristics of nitrophenols(NPs) that determine their environmental behavior. In the present work, to reveal the relationship between IMHB and nitrophenol reduction, the effects of IMHB on the molecular geometries and properties of a series of nitrophenols were investigated with density functional theory(DFT) calculations. The results of the geometry optimization and atoms-in-molecules(AIM) analysis indicate relatively strong IMHBs in ortho-substituted nitrophenols, whose stability could be significantly improved. In comparing the E LUMO and adiabatic electron affinities(AEA) of the nitrophenol isomers, the presence of IMHBs benefited the reductive degradation of NPs, consistent with a previous study. To gain an insight into the effect mechanism of IMHBs on the reductive degradation behavior of these molecules, the condensed electrophilicity Fukui index(f ), natural charges and Wiberg bond orders of these nitrophenol isomers were calculated. The calculations indicate that the electrophilic reactivity activity of the O atom on the nitro group could be significantly improved due to the formation of IMHBs, which results in the enhanced reductive degradation of ortho-substituted NPs.

Keywords

Nitrophenol / Reduction / Intramolecular hydrogen bond / Effect mechanism / Density functional theory

Cite this article

Download citation ▾
Hongmei Zhang, Yan Liu, Fangping Ma, Wei Qiu, Bo Lei, Jinyou Shen, Xiuyun Sun, Weiqing Han, Jiansheng Li, Lianjun Wang. Density functional theoretical studies on effect of intramolecular hydrogen bonds on reduction of nitrophenols. Chemical Research in Chinese Universities, 2017, 33(5): 785-793 DOI:10.1007/s40242-017-7066-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dieckmann M. S., Gray K. A. Water Res., 1996, 30(5): 1169.

[2]

Gutes A., Cespedes F., Alegret S., Del Valle M. Biosens. Bioelectron., 2005, 20(8): 1668.

[3]

Belloli R., Bolzacchini E., Clerici L., Rindone B., Sesana G., Li-brando V. Environ. Eng. Sci., 2006, 23(2): 405.

[4]

Cañzares P., Lobato J., Paz R., Rodrigo M. A. Sáez C. Water Res., 2005, 39(12): 2687.

[5]

Bo L., Quan X., Chen S., Zhao H., Zhao Y. Water Res., 2006, 40(16): 3061.

[6]

Ye M., Chen Z., Wang W., Shen J., Ma J. J. Hazard. Mater., 2010, 184(1—3): 612.

[7]

Essam T., Amin M. A., Tayeb O. E., Mattiassion B., Guieysse B. Water Res., 2007, 41(8): 1697.

[8]

She Z. L., Xie T., Zhu Y. J., Tang G. F., Huang J. J. Hazard. Mater., 2012, 241: 478.

[9]

Kulkarni M., Chaudhari A. Bioresour. Technol., 2006, 97(8): 982.

[10]

Arora P. K., Srivastava A., Singh V. P. J. Hazard. Mater., 2014, 266: 42.

[11]

Ou C. J., Zhang S., Liu J. G., Shen J. Y., Liu Y., Sun X. Y., Li J. S., Wang L. J. Phys. Chem. Chem. Phys., 2015, 17(34): 22072.

[12]

Yuan S. H., Tian M., Cui Y. P., Lin L., Lu X. H. J. Hazard. Mater., 2006, 137(1): 573.

[13]

Shen J. Y., Xu X. P., Jiang X. B., Hua C. X., Zhang L. B., Sun X. Y., Li J. S., Mu Y., Wang L. J. Water Res., 2014, 67: 11.

[14]

Dai R. R., Chen J., Lin J., Xiao S. Y., Chen S., Deng Y. L. J. Hazard. Mater., 2009, 170: 141.

[15]

Wu C. K., An X. Y., Gao S. Y., Su L. RSC Adv., 2015, 5(87): 71259.

[16]

Goyal A., Bansal S., Singhal S. Int. J. Hydrogen. Energ., 2014, 39(10): 4895.

[17]

Chua C. K., Martin P., Lubomír R. J. Phys. Chem. C, 2012, 116(6): 4243.

[18]

Shen J. Y., Zhang Y. Y., Xu X. P., Hua C. X., Sun X. Y., Li J. S., Mu Y., Wang L. J. Water Res., 2013, 47(15): 5511.

[19]

Jiang X. B., Shen J. Y., Lou S., Mu Y., Wang N., Han W. Q., Sun X. Y., Li J. S., Wang L. J. Bioresource. Technol., 2016, 216: 645.

[20]

Estacio S. G., do Couto P. C., Cabral B. J. C., da Piedade M. E. M., Simoes J. A. M. J. Phys. Chem. A, 2004, 108(49): 10834.

[21]

Zhao G. J., Han K. L. J. Phys. Chem. A, 2009, 113(52): 14329.

[22]

Cui G. L., Lan Z. G., Thiel W. J. Am. Chem. Soc., 2012, 134(3): 1662.

[23]

Chen P. C., Tzeng S. C. J. Mol. Struct.(Theochem), 1999, 467(3): 243.

[24]

Heintz A., Kapteina S., Verevkin S. P. J. Phys. Chem. A, 2007, 111(28): 6552.

[25]

Vasile C. Chemical Physics, 2004, 300(1—3): 1.

[26]

Filarowski A., Kochel A., Koll A., Bator G., Mukherjee S. J. Mol. Struct., 2006, 785(1—3): 7.

[27]

Yan X. F., Xiao H. M., Gong X. D., Ju X. H. Chemosphere, 2005, 59(4): 467.

[28]

Litwinienko G., DiLabio G. A., Mulder P., Korth H. G., Ingold K. U. J. Phys. Chem. A, 2009, 113(22): 6275.

[29]

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Peters-son G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmay-lov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A. Jr, Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staro-verov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam M. J., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J. Gaussian 09. Revision B.01, 2009, Wallingford: Gaussian Inc.

[30]

Biegler-Konig F., Schonbohm J., Derdau R., Bayles D., Bader R. F. W. AIM2000, Version 1, 2000, Bielefeld: Büro für Innovative Software.

[31]

Espinosa E., Molins E., Lecomte C. Chem. Phys. Lett., 1998, 285(3/4): 170.

[32]

Liu H. N., Walker L. A., Doerksen R. J. Chem. Res. Toxicol., 2011, 24(9): 1476.

[33]

Thanikaivelan P., Padmanabhan J., Subramanian V., Ramasami T. Theor. Chem. Acc., 2002, 107(6): 326.

[34]

Koch U., Popelier P. L. A. J. Phys. Chem., 1995, 99: 9747.

[35]

Nazarparvar E., Zahedi M., Klein E. J. Org. Chem., 2012, 77(22): 10093.

[36]

Han J., Deming R. L., Tao F. M. J. Phys. Chem. A, 2004, 108(38): 7736.

[37]

Tratnyek P. G., Weder E. J., Schwarzenbach R. P. Environ. Toxicol. Chem., 2003, 22(8): 1733.

[38]

Colón D., Weber E. J., Anderson J. L. Environ. Sci. Technol., 2006, 40(16): 4976.

[39]

She L. Z., Yu J. W., Jin C. J. J. Environ. Sci. China, 2004, 25(4): 82.

[40]

Hilal S. H., Carreira L. A., Karickhoff S. W., Melton C. M. Quant. Struct.-Act. Relat., 1993, 12(4): 389.

[41]

Wei T., Zhu W. H., Zhang J. J., Xiao H. M. J. Hazard. Mater., 2010, 179(1—3): 581.

[42]

Chen Z. X., Xiao J. M., Xiao H. M., Chiu Y. N. J. Phys. Chem. A, 1999, 103(40): 8062.

[43]

Hammes-Schiffer S., Stuchebrukhov A. A. Chem. Rev., 2010, 110(12): 6939.

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/