Computational study on mechanisms of C2H5O2+OH reaction and properties of C2H5O3H complex

Yanli Liu , Long Chen , Dongping Chen , Weina Wang , Fengyi Liu , Wenliang Wang

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (4) : 623 -630.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (4) : 623 -630. DOI: 10.1007/s40242-017-7055-4
Article

Computational study on mechanisms of C2H5O2+OH reaction and properties of C2H5O3H complex

Author information +
History +
PDF

Abstract

A comprehensive theoretical study on the bimolecular reaction of C2H5O2 with OH radicals was performed at the CCSD(T)/6-311++G(2df,2p)//B3LYP/6-311+G(d,p) level of theory. The calculation results show that C2H5O2 + OH reaction proceeds on both the singlet and the triplet potential energy surfaces(PESs). On the singlet PES, the favorable pathway is the addition of OH radical to the terminal oxygen atom of C2H5O2 radical, leading to the formation of trioxide C2H5O3H with a barrierless process. Then, the trioxide directly decomposes to the products C2H5O and HO2 radicals. On the triplet PES, the predominant pathways are α and β hydrogen atom abstractions of C2H5O2 radical by OH radical-forming products 3CH3CHO2+H2O and 3CH2CH2O2+H2O, and the corresponding barriers are 12.02(3TS8) and 19.19 kJ/mol(3TS9), respectively. In addition, the comprehensive properties of trioxide C2H5O3H were investigated for the first time. The results indicate that the trioxide complex RC1 can exist stably in the atmosphere owing to a significantly large and negative enthalpy of formation(‒118.44 kJ/mol) as well as a high first excitation energy(5.94 eV).

Keywords

C2H5O2 radical / Trioxide C2H5O3H complex / Reaction mechanism / Enthalpy of formation / First excited energy

Cite this article

Download citation ▾
Yanli Liu, Long Chen, Dongping Chen, Weina Wang, Fengyi Liu, Wenliang Wang. Computational study on mechanisms of C2H5O2+OH reaction and properties of C2H5O3H complex. Chemical Research in Chinese Universities, 2017, 33(4): 623-630 DOI:10.1007/s40242-017-7055-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wallington T. J., Dagaut P., Kurylo M. J. Chem. Rev., 1992, 92: 667.

[2]

Stone D., Whalley L. K., Heard D. E. Chem. Soc. Rev., 2012, 41: 6348.

[3]

Orlando J. J., Tyndall G. S., Wallington T. J. Chem. Rev., 2003, 103: 4657.

[4]

Zhang P., Wang W. L., Zhang T. L., Chen L., Du Y. M., Li C. Y., Lu J. J. Phys. Chem. A, 2012, 116: 4610.

[5]

Hou H., Wang B. S. J. Phys. Chem. A, 2005, 109: 451.

[6]

Hou H., Li J. C., Song X. L., Wang B. S. J. Phys. Chem. A, 2005, 109: 11206.

[7]

Tang Y., Zhang W. J. Fluorine Chem., 2015, 180: 110.

[8]

Bedjanian Y., Riffault V., Bras G. L., Poulet G. J. Phys. Chem. A, 2001, 105: 573.

[9]

Wang R., Li Y. L., Feng X. K., Song L., Zhang T. L., Wang Z. Q. Chem. J. Chinese Universities, 2017, 38(3): 429.

[10]

Butkovskaya N., Kukui A., Bras G. L. J. Phys. Chem. A, 2010, 114: 956.

[11]

Stewart V., Canosa-Mas C. E., Christian P. Phys. Chem. Chem. Phys., 2006, 8: 3749.

[12]

Teresa R. M., Percival C. J., McGillen M. R., Hamerb P. D., Shallcross D. E. Phys. Chem. Chem. Phys., 2007, 9: 4338.

[13]

Drougas E., Kosmas A. M. J. Phys. Chem. A, 2007, 111: 3402.

[14]

Finlayson-Pitts B. J., Pitts J. N. Science, 1997, 276: 1045.

[15]

Ziemann P. J., Roger A. Chem. Soc. Rev., 2012, 41: 6582.

[16]

Zhao Y., Wingen L. M., Perraud V. Phys. Chem. Chem. Phys., 2015, 17: 12500.

[17]

Hasson A. S., Tyndall G. S., Orlando J. J. J. Phys. Chem. A, 2004, 108: 5979.

[18]

Archibald A. T., Petit A. S., Percival C. J. Sci. Letts., 2009, 10: 102.

[19]

Bian H., Zhang S. G., Zhang H. M. Int. J. Quantum Chem., 2015, 115: 1181.

[20]

Yan C., Kocevska S., Krasnoperov L. N. J. Phys. Chem. A, 2016, 120: 6111.

[21]

Nguyen T. L., McCarthy M. C., Stanton J. F. J. Phys. Chem. A, 2015, 119: 7197.

[22]

Müller J. F., Liu Z., Nguyen V. S., Stavrakou T., Harvey J. N., Pee-ters J. Nat. Commun., 2016, 7: 13213.

[23]

Faragó E. P., Schoemaecker C., Viskolcz B., Fittschen C. Chem. Phys. Lett., 2015, 619: 196.

[24]

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., Pople J. A. Gaussian 09, 2009, Wallingford CT: Gaussian Inc..

[25]

Curtiss L. A., Raghavachari K., Redfern P. C., Pople J. A. J. Chem. Phys., 1997, 106: 1063.

[26]

Petersson G. A., Bennett A., Tensfeldt T. G., Al-Laham M. A., Shir-ley W. A., Mantzaris J. J. Phys. Chem., 1988, 89: 2193.

[27]

Montgomery J. A., Frisch M. J., Ochterski J. W., Petersson G. A. J. Chem. Phys., 2000, 112: 6532.

[28]

Curtiss L. A., Redfern P. C., Raghavachari K. J. Chem. Phys., 2007, 126: 084108.

[29]

Curtiss L. A., Redfern P. C., Aghavachari K. R. J. Chem. Phys., 2007, 127: 124105.

[30]

The National Institute of Standards and Technology, NIST Chemistry Webbook, http://webbook.nist.gov/chemistry

[31]

Ruscic B., Pinzon R. E., Morton M. L. J. Phys. Chem. A, 2006, 110: 6592.

[32]

Nakajima M., Endo Y. J. Chem. Phys., 2013, 139: 101103.

[33]

Miliordos E., Xantheas S. S. Angew. Chem. Int. Ed., 2015, 54: 1.

[34]

Koller J., Hodošcek M., Plesnicar B. J. Am. Chem. Soc., 1990, 112: 2124.

[35]

Luo Y. R. J. Chem. Educ., 1981, 58: 26.

[36]

Engdahl A., Nelander B. Science, 2002, 295: 482.

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/