Circular cationic compounds B3Rg n + of triangular ion B3 + trapping rare gases

Ruiwen Zhang , Anyong Li , Zhuozhe Li

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (6) : 958 -964.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (6) : 958 -964. DOI: 10.1007/s40242-017-7054-5
Article

Circular cationic compounds B3Rg n + of triangular ion B3 + trapping rare gases

Author information +
History +
PDF

Abstract

The circular cationic compounds B3Rg n +(n=1—3, Rg=He—Rn) formed by the electron-deficient aromatic ion B3 + trapping rare gases were studied theoretically. The formed B—Rg bond has large bonding energy in the range of 60—209 kJ/mol, its length is close to the sum of covalent radii of B and Rg, for Ar—Rn. The analyses based on the natural bond orbitals and electron density topology show that the B—Rg bonds for Ar—Rn have strong covalent character. The geometric structures, binding energy, bond nature and thermodynamic stability of the boron-rare gas compounds show that these species for Ar—Rn may be experimentally available. Several different theoretical studies have demonstrated that these triangular cations are aromatic.

Keywords

B3Rg n + / Aromaticity / B3LYP / MP2 / def2-QZVPPD

Cite this article

Download citation ▾
Ruiwen Zhang, Anyong Li, Zhuozhe Li. Circular cationic compounds B3Rg n + of triangular ion B3 + trapping rare gases. Chemical Research in Chinese Universities, 2017, 33(6): 958-964 DOI:10.1007/s40242-017-7054-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pauling L. J. Am. Chem. Soc., 1933, 55(5): 1895.

[2]

Bartlett N. Xenon Hexafluoroplatinate(V) Xe + [PtF 6 ] , 1962, London: Proceedings of the Chemical Society of London, 218.

[3]

Thompson C. A., Andrews L. J. Am. Chem. Soc., 1994, 116(1): 423.

[4]

Khriachtchev L., Pettersson M., Runeberg N., Lundell J., Räsänen M. Nature, 2000, 406(6798): 874.

[5]

Li J., Bursten B. E., Liang B., Andrews L. Science, 2002, 295(5563): 2242.

[6]

Jayasekharan T., Ghanty T. K. J. Chem. Phys., 2006, 125(23): 234106.

[7]

Khriachtchev L., Isokoski K., Cohen A., Räsänen M., Gerber R. B. J. Am. Chem. Soc., 2008, 130(19): 6114.

[8]

Li Z. Z., Li A.Y., Ji L. F. J. Phys. Chem. A, 2015, 119(30): 8400.

[9]

Khriachtchev L., Tanskanen H., Lundell J., Pettersson M., Kiljunen H., Räsänen M. J. Am. Chem. Soc., 2003, 125(16): 4696.

[10]

Khriachtchev L., Tanskanen H., Cohen A., Gerber R. B., Lundell J., Pettersson M., Kiljunen H., Räsänen M. J. Am. Chem. Soc., 2003, 125(23): 6876.

[11]

Li T. H., Mou C. H., Chen H. R., Hu W. P. J. Am. Chem. Soc., 2005, 127(25): 9241.

[12]

Antoniotti P., Borocci S., Bronzolino N., Cecchi P., Grandinetti F. J. Phys. Chem. A, 2007, 111(40): 10144.

[13]

Pauzat F., Ellinger Y. Planet. Space. Sci., 2005, 53(13): 1389.

[14]

Pauzat F., Ellinger Y. J. Chem. Phys., 2007, 127(1): 014308.

[15]

Pauzat F., Ellinger Y., Pilmé J., Mousis O. J. Chem. Phys., 2009, 130(17): 174313.

[16]

Chakraborty A., Giri S., Chattaraj P. K. New J. Chem., 2010, 34(9): 1936.

[17]

Kupfer T., Braunschweig H., Radacki K. Angew. Chem. Int. Edit., 2015, 54(50): 15084.

[18]

Hernandez R., Simons J. J. Chem. Phys., 1991, 94(4): 2961.

[19]

Becke A. D. J. Chem. Phys., 1993, 98(2): 1372.

[20]

Lee C., Yang W., Parr R. G. Phys. Rev. B, 1988, 37(2): 785.

[21]

Frisch M. J., Head-Gordon M., Pople J. A. Chem. Phy. Lett., 1990, 166(3): 275.

[22]

Rappoport D., Furche F. J. Chem. Phys., 2010, 133(13): 134105.

[23]

Peterson K. A., Figgen D., Goll E., Stoll H., Dolg M. J. Chem. Phys., 2003, 119(21): 11113.

[24]

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Peters-son G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmay-lov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staro-verov V. N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J. Gaussian 09, 2013, Wallingford CT: Gaussian Inc..

[25]

Reed A. E., Weinhold F., Curtiss L. A., Pochatko D. J. J. Chem. Phys., 1986, 84(10): 5687.

[26]

Reed A. E., Curtiss L. A., Weinhold F. Chem. Rev., 1988, 88(6): 899.

[27]

Bader R. F. W. Atoms in Molecules: A Quantum Theory, 1990, Oxford: Claerndon Press.

[28]

Lu T., Chen F. W. J. Comput. Chem., 2012, 33(5): 580.

[29]

Zubarev D. Y., Boldyrev A. I. Phys. Chem. Chem. Phys., 2008, 10(34): 5207.

[30]

von Ragué Schleyer P., Maerker C., Dransfeld A., Jiao H., van Eike-ma Hommes N. J. R. J. Am. Chem. Soc., 1996, 118(26): 6317.

[31]

Ponec R., Mayer I. J. Phys. Chem. A, 1997, 101(9): 1738.

[32]

Noorizadeh S., Shakerzadeh E. Phys. Chem. Chem. Phys., 2010, 12(18): 4742.

[33]

Cordero B., Gómez V., Platero-Prats A. E., Revés M., Echeverría J., Cremades E., Barragán F., Alvarez S. Dalton Trans., 2008, 21: 2832.

[34]

Grandinetti F. Nat. Chem., 2013, 5(5): 438.

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/