Facile synthesis of mesoporous Co3O4 nanoflowers for catalytic combustion of ventilation air methane

Shankui Liu , Pengcheng Liu , Ruyue Niu , Shuang Wang , Jinping Li

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (6) : 965 -970.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (6) : 965 -970. DOI: 10.1007/s40242-017-7047-4
Article

Facile synthesis of mesoporous Co3O4 nanoflowers for catalytic combustion of ventilation air methane

Author information +
History +
PDF

Abstract

Flower-like Co3O4 hierarchical microspheres composed of self-assembled porous nanoplates were prepared by employing Pluronic F127 block-copolymer as template. The samples were characterized by powder X-ray diffraction(PXRD), scanning/transmission electron microscopy(SEM/TEM), and nitrogen adsorption-desorption at 77 K. The results show that the catalytic activity of Co3O4 nanoflowers for the combustion of ventilation air methane is higher than that of commercial Co3O4. The superior catalytic performance of this material can be related to its dominantly exposed {112} crystal planes and higher content of surface Co3+.

Keywords

Co3O4 / Nanoflowers / Catalytic combustion / Ventilation air methane

Cite this article

Download citation ▾
Shankui Liu, Pengcheng Liu, Ruyue Niu, Shuang Wang, Jinping Li. Facile synthesis of mesoporous Co3O4 nanoflowers for catalytic combustion of ventilation air methane. Chemical Research in Chinese Universities, 2017, 33(6): 965-970 DOI:10.1007/s40242-017-7047-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Guo T. Y., Du J. P., Wu J. T., Wang S., Li J. P. Chem. Eng. J., 2016, 306: 745.

[2]

Fernández J., Marín P., Díez F. V., Ordóñez S. Fuel Process. Tech-nol., 2015, 133: 202.

[3]

Cargnello M. D., Jaén J. J. H., Garrido J. C., Bakh-mutsky K., Montini T. G., Gámez J. J., Gorte R. J., Fornasiero P. Science, 2012, 337: 713.

[4]

Ren J., Xie C. J., Guo X., Qin Z. F., Lin J. Y., Li Z. Energ. Fuels, 2014, 28: 3688.

[5]

Guo T. Y., Du J. P., Wu J. T., Li J. P. Appl. Catal. A: Gen., 2016, 524: 237.

[6]

Setiawan A., Friggieri J., Kennedy E. M., Dlugogorskiac B. Z., Stockenhuber M. Catal. Sci. Technol., 2014, 4: 1793.

[7]

Răciulete M., Layrac G., Tichit D., Marcu I. C. Appl. Catal. A: Gen., 2014, 477: 195.

[8]

Gholami R., Smith K.J. Appl. Catal. B: Environ., 2015, 168/169: 156.

[9]

Lim T. H., Cho S. J., Yang H. S., Engelhard M. H., Kim D. H. Appl. Catal. A: Gen., 2015, 505: 62.

[10]

Su S., Chen H. W., Teakle P., Xue S. J. Environ. Management, 2008, 86: 44.

[11]

Guo T. Y., Du J. P., Wang S., Wu J. T., Li J. P. Chem. Res. Chinese Universities, 2016, 32(5): 843.

[12]

Yang Z., Liu J., Zhang L., Zheng S., Guo M., Yan Y. RSC Adv., 2014, 4: 39394.

[13]

Shen J., Hayes R. E., Wu X. X., Semagina N. ACS Catal., 2015, 5: 2916.

[14]

Nilsson J., Carlsson P. A., Fouladvand S., Martin N. M., Gustafson J., Newton M. A., Lundgren E., Grönbeck H., Skoglundh M. ACS Catal., 2015, 5(4): 2481.

[15]

Chen C., Yeh Y. H., Cargnello M., Murray C. B., Fornasiero P., Gorte R. J. ACS Catal., 2014, 4(11): 3902.

[16]

Niu F., Li S., Zong Y., Yao Q. J. Phys. Chem. C, 2014, 118(33): 19165.

[17]

Wu H., Pantaleo G. D., Carlo G., Guo S., Marcì G., Concepción P., Venezia A. M., Liotta L. F. Catal. Sci. Technol., 2015, 5: 1888.

[18]

Wang Q., Peng Y., Fu J., Kyzas G. Z. R., Billah S. M., An S. Q. Appl. Catal. B-Environ., 2015, 168/169: 42.

[19]

Urda A., Popescu I., Cacciaguerra T., Tanchoux N., Tichit D., Marcu I. C. Appl. Catal. A: Gen., 2013, 464/465: 20.

[20]

Zhu Z. Z., Lu G. Z., Zhang Z. G., Guo Y., Guo Y. L., Wang Y. Q. ACS Catal., 2013, 3(6): 1154.

[21]

Zavyalova U., Scholz P., Ondruschka B. Appl. Catal. A: Gen., 2007, 323: 226.

[22]

Chen Z. P., Wang S., Liu W. G., Gao X. H., Gao D. N., Wang M. Z., Wang S. D. Appl. Catal. A: Gen., 2016, 525: 94.

[23]

Mu J. S., Zhang L., Zhao M., Wang Y. ACS Appl. Mater. Interfaces, 2014, 6(10): 7090.

[24]

Jiang J., Liu J. P., Huang X. T., Li Y. Y., Ding R. M., Ji X. X., Hu Y. Y., Chi Q. B., Zhu Z. H. Cryst. Growth Design, 2010, 10(1): 70.

[25]

Sun H. Q., Ang H. M., Tadé M. O., Wang S. B. J. Mater. Chem. A, 2013, 1: 14427.

[26]

Wang H., Chen C. L., Zhang Y. X., Peng L. X., Ma S., Yang T., Guo H. H., Zhang Z. D., Su D. S., Zhang J. Nat. Commun., 2015, 6: 1.

[27]

Liotta L. F., Wu H., Pantaleo G., Venezia A. M. Catal. Sci. Technol., 2013, 3: 3085.

[28]

Hu L. H., Peng Q., Li Y. D. J. Am. Chem. Soc., 2008, 130(48): 16136.

[29]

Roy M., Ghosh S., Naskar M. K. Phys. Chem. Chem. Phys., 2015, 17: 10160.

[30]

Roy M., Ghosh S., Naskar M. K. Dalton Trans., 2014, 43: 10248.

[31]

Cao X. L., Wang L. L., Wang Y. J., Xu Q. J., Li Q. X. Chem. J. Chinese Universities, 2015, 36(6): 1187.

[32]

Teng F., Chen M., Li G., Teng Y., Xu T., Hang Y., Yao W., Santhana-gopalan S., Meng D. D., Zhu Y. Appl. Catal. B: Environ., 2011, 110: 133.

[33]

Xiong S., Yuan C., Zhang X., Xi B., Qian Y. Chem. Eur. J., 2009, 15: 5320.

[34]

Chaudhari K., Bal R., Srinivas D., Chandwadkar A. J., Sivasanker S. Microporous Mesoporous Materials, 2001, 50: 209.

[35]

Jia Y. C., Wang S. Y., Lu J. Q., Luo M. F. Chem. Res. Chinese Universities, 2016, 32(5): 808.

[36]

Zou Z. Q., Meng M., Luo J. Y., Zha Y. Q., Xie Y. N., Hu T. D., Liu T. J. Mol. Catal. A-Chem., 2006, 249: 240.

[37]

Oka Y., Kuroda Y., Matsuno T., Kamata K., Wada H., Shimojima A., Kuroda K. Chem. Eur. J., 2017, 23: 9362.

[38]

Dai Y. F., Shen S. D., Ma Z., Ma L. M., Sun Z. S., Yu J., Wan C. Y., Han S., Mao D. S., Lu G. Z. J. Nanosci. Nanotechn., 2017, 17(6): 3772.

[39]

Ding R. R., Li C., Wang L. J., Hu R. S. Appl. Catal. A: Gen., 2013, 464/465: 261.

[40]

Xu X. L., Han H., Liu J. J., Liu W. M., Li W. L., Wang X. J. Rare Earths, 2014, 32: 159.

[41]

Wang F. G., Zhang L. J., Xu L. L., Deng Z. Y., Shi W. D. Fuel, 2017, 203: 419.

[42]

Liotta L. F., Carlo G. D., Pantaleo G., Deganello G. Appl. Catal. B: Environ., 2007, 70: 314.

[43]

Song W., Poyraz A. S., Meng Y., Ren Z., Chen S. Y., Suib S. L. Chem. Mater., 2014, 26: 4629.

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/