Preparation of 9,10-diarylphenanthrene derivative and its application in full color emitters synthesis

Wenkai Zhao , Zhiming Wang , Xueying Li , Dongdong Zhang , Xiaojuan Zhang , Ping Lu

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (4) : 574 -580.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (4) : 574 -580. DOI: 10.1007/s40242-017-7044-7
Article

Preparation of 9,10-diarylphenanthrene derivative and its application in full color emitters synthesis

Author information +
History +
PDF

Abstract

As a building block with high photo- and thermo-stability, phenanthrene plays an important role in the preparation of blue(or deep-blue) and full color fluorescence materials. However, some critical issues must be addressed before its full potential can be realised, such as its tedious and low-yield modification processes and the red-shift effect in its aggregated state. In this work, the inexpensive raw material 9,10-phenanthrenequinone(PQ) was chosen as the preparatory functional phenanthrene block. After modifying PQ via halo-substituted, nucleophilic and rearrangement reactions with high yields, the corresponding monomers featured high reactivity and solubility. Compared with classical synthetic approaches for similar phenanthrene-based derivatives, the low efficiency ring-closed reaction and hazardous lithium-injection operation can be omitted using this approach. This new building block demonstrates a clear steric effect following the introduction of peripheral phenyl and alkoxy groups; moreover, stacking in the aggregated state is avoided, which benefits controlling the bandgap and maintaining blue emission as either an emitter or a donor. By changing the central building block in three oligomers, emission of the three primary colors was achieved in solution and film via the conjugated increment and charge-transform effect. This work provides a method of modifying phenanthrene by a simple and efficient synthesis route with inhibition of solid-state aggregation and offers an effective strategy to further develop functional phenanthrene-based building blocks.

Keywords

Phenanthrene / Functionalization / Aggregation / Fluorescence / Three primary colors emission

Cite this article

Download citation ▾
Wenkai Zhao, Zhiming Wang, Xueying Li, Dongdong Zhang, Xiaojuan Zhang, Ping Lu. Preparation of 9,10-diarylphenanthrene derivative and its application in full color emitters synthesis. Chemical Research in Chinese Universities, 2017, 33(4): 574-580 DOI:10.1007/s40242-017-7044-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang C. L., Dong H. L., Hu W. P., Liu Y. Q., Zhu D. B. Chem. Rev., 2012, 112(4): 2208.

[2]

Zhu M. R., Yang C. L. Chem. Soc. Rev., 2013, 42: 4963.

[3]

Murphy A. R., Fréchet J. M. J. Chem. Rev., 2007, 107(4): 1066.

[4]

Yao L., Yang B., Ma Y. G. Sci. China Chem., 2014, 57(3): 335.

[5]

Dong H. L., Zhu H. F., Meng Q., Gong X., Hu W. P. Chem. Soc. Rev., 2012, 41: 1754.

[6]

Ranger M., Rondeau D., Leclerc M. Macromolecules, 1997, 30(25): 7686.

[7]

Redecker M., Bradley D. D.C., Inbasekaran M., Wu W. W., Woo E. P. Adv. Funct. Mater., 1999, 11(3): 241.

[8]

Zeng G., Yu W. L., Chua S. J., Huang W. Macromolecules, 2002, 35(18): 6907.

[9]

Liu L. L., Tang S., Liu M. R., Xie Z. Q., Zhang W., Lu P., Hanif M., Ma Y. G. J. Phys. Chem. B, 2006, 110(28): 13734.

[10]

Park S. H., Jin Y., Kim J. Y., Kim S. H., Kim J., Suh H., Lee K. Adv. Funct. Mater., 2007, 17: 3063.

[11]

Kawano S., Yang C., Ribas M., Baumgarten M. Macromolecules, 2008, 41(21): 7933.

[12]

He B., Tian H. K., Geng Y. H., Wang F. S., Mullen K. Org. Lett., 2008, 10(5): 773.

[13]

Jordi P., Ruud V., Miquel S. J. Org. Chem., 2007, 72: 1134.

[14]

Boden B. N., Jardine K. J., Leung A. C. W., MacLachlan M. J. Org. Lett., 2006, 8(9): 1855.

[15]

Tang S., Li W. J., Shen F. Z., Liu D. D., Yang B., Ma Y. G. J. Mater. Chem., 2012, 22: 4401.

[16]

Liang H. J., Wang X. X., Zhang X. Y., Liu Z. Y., Ge Z. Y., Ouyang X. H., Wang S. D. New J. Chem., 2014, 38: 4696.

[17]

Tian H. K., Wang J., Shi J. W., Yan D. H., Wang L. X., Geng Y. H., Wang F. S. J. Mater. Chem., 2005, 15: 3026.

[18]

Grisorio R., Suranna G. P., Mastrorilli P., Nobile C. F. Org. Lett., 2007, 9(16): 3149.

[19]

Wang Z. M., Lu P., Chen S. M., Gao Z., Shen F. Z., Zhang W. S., Xu Y. X., Kwok H. S., Ma Y. G. J. Mater. Chem., 2011, 21: 5451.

[20]

Wang Z. M., Song X. H., Ma L. L., Feng Y., Gu C., Zhang X. J., Lu P., Ma Y. G. New J. Chem., 2013, 37: 2440.

[21]

Muddasir H., Lu P., Li M., Zheng Y., Xie Z. Q., Ma Y. G., Li D., Li J. H. Polym. Int., 2007, 56: 1507.

[22]

Grisorio R., Suranna G. P., Mastrorilli P., Nobile C. F. Org. Lett., 2007, 9: 3149.

[23]

Wang Z. M., Lu P., Xue S. F., Gu C., Lv Y., Zhu Q., Wang H., Ma Y. G. Dyes and Pigments, 2011, 91: 356.

[24]

Wang Z. M., Li X. Y., Xue K., Li H., Zhang X. J., Liu Y., Yu Z. Q., Lu P., Chen P. J. Mater. Chem. C, 2016, 4: 1886.

[25]

Zhang M., Xue S. F., Dong W. Y., Wang Q., Fei T., Gu C., Ma Y. G. Chem. Commun., 2010, 46: 3923.

[26]

Zou L. Y., Guan S., Li L. J., Zhao L. Chem. Res. Chinese Universities, 2015, 31(5): 801.

[27]

Yao C. F., Zeng H. P. Chem. Res. Chinese Universities, 2011, 27(4): 599.

[28]

Wang Z. M., Feng Y., Zhang S. T., Gao Y., Gao Z., Chen Y. M., Zhang X. J., Lu P., Yang B., Chen P., Ma Y. G., Liu S. Y. Phys. Chem. Chem. Phys., 2014, 16: 20772.

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/