Structures, stabilities and work functions of alkali-metal-adsorbed boron α 1-sheets

Tingting Yi , Bing Zheng , Haitao Yu , Ying Xie

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (4) : 631 -637.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (4) : 631 -637. DOI: 10.1007/s40242-017-7038-5
Article

Structures, stabilities and work functions of alkali-metal-adsorbed boron α 1-sheets

Author information +
History +
PDF

Abstract

In this study, we employed the density functional theory method to simulate Li-, Na- and K-adsorbed boron α1-sheets(α1-BSTs). After optimizing possible structures, we investigated their thermodynamic stabilities, barriers for metal atom diffusion on the substrate, and work functions. The computed results indicate that the work function of α1-BST decreases significantly after the adsorption of Li, Na and K. Furthermore, under high hole coverage, these alkali-metal-adsorbed α1-BSTs have lower work functions than the two-dimensional materials of greatest concern and the commonly used electrode materials Ca and Mg. Therefore, the Li-, Na- and K-adsorbed α1-BSTs are potential low-work-function nanomaterials.

Keywords

Boron α1-sheet / Binding energy / Migration barrier / Alkali metal adsorption / Work function

Cite this article

Download citation ▾
Tingting Yi, Bing Zheng, Haitao Yu, Ying Xie. Structures, stabilities and work functions of alkali-metal-adsorbed boron α 1-sheets. Chemical Research in Chinese Universities, 2017, 33(4): 631-637 DOI:10.1007/s40242-017-7038-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gupta A., Sakthivel T., Seal S. Prog. Mater. Sci., 2015, 73: 44.

[2]

Bianco E., Butler S., Jiang S. S., Restrepo O. D., Windl W., Gold-berger J. E. ACS Nano, 2013, 7(5): 4414.

[3]

Aufray B., Kara A., Vizzini S., Oughaddou H., Léandri C., Ealet B., Le Lay G. Appl. Phys. Lett., 2010, 96(18): 183102.

[4]

Vogt P., de Padova P., Quaresima C., Avila J., Frantzeskakis E., Asensio M. C., Resta A., Ealet B., Le Lay G. Phys. Rev. Lett., 2012, 108(15): 155501.

[5]

Zhu F. F., Chen W. J., Xu Y., Gao C. L., Guan D. D., Liu C. H., Qian D., Zhang S. C., Jia J. F. Nat. Mater., 2015, 14: 1020.

[6]

Reich E. S. Nature, 2014, 506(7486): 19.

[7]

Zhu Y. W., Murali S., Cai W. W., Li X. S., Suk J. W., Potts J. R., Ruoff R. S. Adv. Mater., 2010, 22(35): 3906.

[8]

Eigler S., Hirsch A. Angew. Chem. Int. Ed., 2014, 53(30): 7720.

[9]

Zhu Y., James D. K., Tour J. M. Adv. Mater., 2012, 24(36): 4924.

[10]

Weiss N. O., Zhou H. L., Liao L., Liu Y., Jiang S., Huang Y., Duan X. F. Adv. Mater., 2012, 24(43): 5782.

[11]

Huang Y., Liang J. J., Chen Y. S. Small, 2012, 8(12): 1805.

[12]

Zhu J. X., Yang D., Yin Z. Y., Yan Q. Y., Zhang H. Small, 2014, 10(17): 3480.

[13]

Ji L. W., Meduri P., Agubra V., Xiao X. C., Acoutlabi M. Adv. Energy Mater., 2016, 6(16): 150215.

[14]

Mortazavi B., Dianat A., Cuniberti G., Rabczuk T. Electrochim. Ac-ta, 2016, 213: 865.

[15]

Lau K. C., Pandey R. J. Phys. Chem. B, 2008, 112(33): 10217.

[16]

Penev E. S., Bhowmick S., Sadrzadeh A., Yakoson B. I. Nano Lett., 2012, 12(5): 2441.

[17]

Wu X. J., Dai J., Zhao Y., Zhuo Z. W., Yang J. L., Zeng X. C. ACS Nano, 2012, 6(8): 7443.

[18]

Yu X., Li L. L., Xu X. W., Tang C. C. J. Phys. Chem. C, 2012, 116(37): 20075.

[19]

Er S., de Wijs G. A., Brocks G. J. Phys. Chem. C, 2009, 113(43): 18962.

[20]

Lau K. C., Pandey R. J. Phys. Chem. C, 2007, 111(7): 2906.

[21]

Zheng B., Yu H. T., Lian Y. F., Xie Y. Chem. Phys. Lett., 2016, 648: 81.

[22]

Galeev T. R., Chen Q., Guo J. C., Bai H., Miao C. Q., Lu H. G., Sergeeva A. P., Li S. D., Boldyrev A. I. Phys. Chem. Chem. Phys., 2011, 13: 11575.

[23]

Zheng B., Yu H. T., Xie Y., Lian Y. F. ACS Appl. Mater. Interfaces, 2014, 6(22): 19690.

[24]

Tang H., Ismail Beigi S. Phys. Rev. Lett., 2007, 99(11): 115501.

[25]

Li G. Q. Appl. Phys. Lett., 2009, 94(19): 193116.

[26]

Piazza Z. A., Hu H. S., Li W. L., Zhao Y. F., Li J., Wang L. S. Nat. Commun., 2014, 5: 3113.

[27]

Li W. L., Chen Q., Tian W. J., Bai H., Zhao Y. F., Hu H. S., Li J., Zhai H. J., Li S. D., Wang L. S. J. Am. Chem. Soc., 2014, 136(35): 12257.

[28]

Marchi M., Azadi S., Sorella S. Phys. Rev. Lett., 2011, 107(8): 086807.

[29]

Liu H. S., Gao J. F., Zhao J. J. Sci. Rep., 2013, 3: 3238.

[30]

Tai G. A., Hu T. S., Zhou Y. G., Wang X. F., Kong J. Z., Zeng T., You Y. C., Wang Q. Chem. Int. Ed., 2015, 54(51): 15473.

[31]

Mannix A. J., Zhou X. F., Kiraly B., Wood J. D., Alducin D., Myers B. D., Liu X. L., Fisher B. L., Santiago U., Guest J. R., Yacaman M. J., Ponce A., Oganov A. R., Hersam M. C., Guisinger N. P. Science, 2015, 350(6267): 1513.

[32]

Feng B. J., Zhang J., Zhong Q., Li W. B., Li S., Li H., Cheng P., Meng S., Chen L., Wu K. H. Nat. Chem., 2016, 8(6): 563.

[33]

Li X. B., Xie S. Y., Zheng H., Tian W. Q., Sun H. B. Nanoscale, 2015, 7(45): 18863.

[34]

Zhang H. ACS Nano, 2015, 9(10): 9451.

[35]

Banerjee S., Periyasamy G., Pati S. K. J. Mater. Chem. A, 2014, 2: 3856.

[36]

Eda G., Unalan H. E., Rupesinghe N., Amartunga G. A. J., Chho-walla M. Appl. Phys. Lett., 2008, 93(23): 233502.

[37]

Bekyarova E., Itkis M. E., Ramesh P., Berger C., Sprinkle M., de Heer W. A., Haddon R. C. J. Am. Chem. Soc., 2009, 131(4): 1336.

[38]

Wang H. B., Maiyalagan T., Wang X. ACS Catal., 2012, 2(5): 781.

[39]

Shi Z. M., Zhang Z. H., Kutana A., Yakobson B. I. ACS Nano, 2015, 9(10): 9802.

[40]

Ding Y., Wang Y. L. J. Phys. Chem. C, 2014, 118(8): 4509.

[41]

Pandey M., Rasmussen F. A., Kuhar K., Olsen T., Jacobsen K. W., Thygesen K. S. Nano Lett., 2016, 16(4): 2234.

[42]

Yildirim H., Kinaci A., Zhao Z. J., Chan M. K. Y., Greeley J. P. ACS Appl. Mater. Interfaces, 2014, 6(23): 21141.

[43]

Zhou L. J., Hou Z. F., Wu L. M. J. Phys. Chem. C, 2012, 116(41): 21780.

[44]

Sahin H., Peeters F. M. Phys. Rev. B, 2013, 87(8): 085423.

[45]

Xu B., Lu H. S., Liu B., Liu G., Wu M. S., Ouyang C. Y. Chin. Phys. B, 2016, 25(6): 067103.

[46]

Pang Q., Li L., Zhang L. L., Zhang C. L., Song Y. L. Can. J. Phys., 2015, 93(11): 1310.

[47]

Pang Q., Li L., Zhang C. L., Wei X. M., Song Y. L. Mater. Chem. Phys., 2015, 160: 96.

[48]

Hao J. H., Wang Z. J., Wang Y. F., Yin Y. H., Jiang R., Jin Q. H. Solid State Sci., 2015, 50: 69.

[49]

Yu Y. J., Zhao Y., Ryu S., Brus L. E., Kim K. S., Kim P. Nano Lett., 2009, 9(10): 3430.

[50]

Liang Q. H., Jiang J. K., Meng R. S., Ye H. Y., Tan C. J., Yang Q., Sun X., Yang D. G., Chen X. P. Phys. Chem. Chem. Phys., 2016, 18(24): 16386.

[51]

Shi Y. M., Kim K. K., Reina A., Hofmann M., Li L. J., Kong J. ACS Nano, 2010, 4(5): 2689.

[52]

Cho Y., Sohn A., Kim S., Hahm M. G., Kim D. H., Cho B., Kim D. W. ACS Appl. Mater. Interfaces, 2016, 8(33): 21612.

[53]

Xia S. H., Liu L., Kong Y. K., Wang H. G., Wang M. S. Appl. Surf. Sci., 2016, 387: 1110.

[54]

Kwon K. C., Choi K. S., Kim B. J., Lee J. L., Kim S. Y. J. Phys. Chem. C, 2012, 116(50): 26586.

[55]

Bae G., Cha J., Lee H., Park W., Park N. Carbon, 2012, 50(3): 851.

[56]

Perdew J. P., Chevary J. A., Vosko S. H., Jackson K. A., Pederson M. R., Singh D. J., Fiolhais C. Phys. Rev. B, 1992, 46(11): 6671.

[57]

Perdew J. P., Burke K., Wang Y. Phys. Rev. B, 1996, 54(23): 16533.

[58]

Becke A. D. Phys. Rev. A, 1988, 38(6): 3098.

[59]

Langreth D. C., Mehl M. J. Phys. Rev. B, 1983, 28(4): 1809.

[60]

Monkhorst H. J., Pack J. D. Phys. Rev. B, 1976, 13(12): 5188.

[61]

Chan K. T., Neaton J. B., Cohen M. L. Phys. Rev. B, 2008, 77(23): 235430.

[62]

Wang Y. S., Wang F., Li M., Xu B., Sun Q., Jia Y. Appl. Surf. Sci., 2012, 258(22): 8874.

[63]

Rytkönen K., Akola J., Manninen M. Phys. Rev. B, 2007, 75(7): 075401.

[64]

Michaelson H. B. J. Appl. Phys., 1977, 48: 4729.

[65]

Skriver H. L., Rosengaard N. M. Phys. Rev. B, 1992, 46(11): 7157.

AI Summary AI Mindmap
PDF

175

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/