One-pot hydrothermal synthesis of novel NiCoO2/reduced graphene oxide composites for supercapacitors
Hongzhi Wang , Xin Shi , Yulei Shi , Weiguo Zhang , Suwei Yao
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (4) : 638 -642.
One-pot hydrothermal synthesis of novel NiCoO2/reduced graphene oxide composites for supercapacitors
Novel NiCoO2/rGO composites with a structure of NiCoO2 nanoparticles anchored on layers of reduced graphene oxide(rGO) were synthesized via a simple one-pot hydrothermal method and were used as faradaic electrodes for supercapacitors. The microstructures of NiCoO2/rGO composites were characterized by means of field emission scanning electron microscopy(FESEM), transmission electron microscopy(TEM), X-ray diffraction(XRD) and thermogravimetric analysis(TGA). When acting as faradaic electrodes for supercapacitors, NiCoO2/rGO composites exhibited a specific capacity of 288 C/g at the current density of 2 A/g and maintained 139.98 C/g at 20 A/g. High capacity retention ratios up to 88% could be achieved after 1000 cycles at a current density of 2 A/g. The outstanding cycling stability was primarily attributed to the combination of mixed transition metal oxides and rGO, which not only maintains a high electrical conductivity for the overall electrode but also prevents the aggregation and volume expansion of electrochemical materials during the cycling processes.
NiCoO2 / rGO / Composite / Faradaic electrode / Supercapacitor
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
/
| 〈 |
|
〉 |