One-pot hydrothermal synthesis of novel NiCoO2/reduced graphene oxide composites for supercapacitors

Hongzhi Wang , Xin Shi , Yulei Shi , Weiguo Zhang , Suwei Yao

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (4) : 638 -642.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (4) : 638 -642. DOI: 10.1007/s40242-017-7026-9
Article

One-pot hydrothermal synthesis of novel NiCoO2/reduced graphene oxide composites for supercapacitors

Author information +
History +
PDF

Abstract

Novel NiCoO2/rGO composites with a structure of NiCoO2 nanoparticles anchored on layers of reduced graphene oxide(rGO) were synthesized via a simple one-pot hydrothermal method and were used as faradaic electrodes for supercapacitors. The microstructures of NiCoO2/rGO composites were characterized by means of field emission scanning electron microscopy(FESEM), transmission electron microscopy(TEM), X-ray diffraction(XRD) and thermogravimetric analysis(TGA). When acting as faradaic electrodes for supercapacitors, NiCoO2/rGO composites exhibited a specific capacity of 288 C/g at the current density of 2 A/g and maintained 139.98 C/g at 20 A/g. High capacity retention ratios up to 88% could be achieved after 1000 cycles at a current density of 2 A/g. The outstanding cycling stability was primarily attributed to the combination of mixed transition metal oxides and rGO, which not only maintains a high electrical conductivity for the overall electrode but also prevents the aggregation and volume expansion of electrochemical materials during the cycling processes.

Keywords

NiCoO2 / rGO / Composite / Faradaic electrode / Supercapacitor

Cite this article

Download citation ▾
Hongzhi Wang, Xin Shi, Yulei Shi, Weiguo Zhang, Suwei Yao. One-pot hydrothermal synthesis of novel NiCoO2/reduced graphene oxide composites for supercapacitors. Chemical Research in Chinese Universities, 2017, 33(4): 638-642 DOI:10.1007/s40242-017-7026-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Conway B. E. J. Electrochem. Soc., 1991, 138: 1539.

[2]

Miller J. R., Simon P. Science Magazine, 2008, 321: 651.

[3]

Liu C., Li F., Ma L. P., Cheng H. M. Adv. Mater., 2010, 22: e28.

[4]

Simon P., Gogotsi Y., Dunn B. Science, 2014, 343: 1210.

[5]

Wang H., Feng H., Li J. Small, 2014, 10: 2165.

[6]

Wang Y., Song Y., Xia Y. Chem. Soc. Rev., 2016, 45: 5925.

[7]

Liu L., Niu Z., Chen J. Chem. Soc. Rev., 2016, 45: 4340.

[8]

Yu Z., Tetard L., Zhai L., Thomas J. Energy Environ. Sci., 2015, 8: 702.

[9]

Yan J., Wang Q., Wei T., Fan Z. Advanced Energy Materials, 2014, 4: 157.

[10]

Simon P., Gogotsi Y. Nat Mater., 2008, 7: 845.

[11]

Guo Y. G., Hu J. S., Wan L. J. Adv. Mater., 2008, 20: 2878.

[12]

Frackowiak E. Phy. Chem. Chem. Phy., 2007, 9: 1774.

[13]

Wang Q., Wen Z. H., Li J. H. Advanced Functional Materials, 2006, 16: 2141.

[14]

Liu H., He P., Li Z., Liu Y., Li J. Electrochimica Acta, 2006, 51: 1925.

[15]

Brousse T., Bélanger D., Long J. W. J. Electrochem. Soc., 2015, 162: A5185.

[16]

Pramanik A., Maiti S., Sreemany M., Mahanty S. Electrochimica Acta, 2016, 213: 672.

[17]

Zhou Q., Wang X., Liu Y., He Y., Gao Y., Liu J. J. Electrochem. Soc., 2014, 161: A1922.

[18]

Zhang G., Lou X. W. D. Sci. Rep., 2013, 3: 1470.

[19]

Wu H. B., Pang H., Lou X. W. D. Energy Environ. Sci., 2013, 6: 3619.

[20]

Yuan C., Li J., Hou L., Zhang X., Shen L., Lou X. W. D. Adv. Fun. Mater., 2012, 22: 4592.

[21]

Zhang G., Lou X. W. D. Adv. Mater., 2013, 25: 976.

[22]

Huang L., Chen D., Ding Y., Feng S., Wang Z. L., Liu M. Nano Let-ters, 2013, 13: 3135.

[23]

Lei Y., Li J., Wang Y., Gu L., Chang Y., Yuan H., Xiao D. ACS Ap-plied Materials & Interfaces, 2014, 6: 1773.

[24]

Zhang X., Xu Y. Materials Letters, 2017, 189: 78.

[25]

Stoller M. D., Park S., Zhu Y., An J., Ruoff R. S. Nano Lett., 2008, 8: 3498.

[26]

Geim A. K., Novoselov K. S. Nat. Mater., 2007, 6: 183.

[27]

Yi H., Wang H., Jing Y., Peng T., Wang Y., Guo J., He Q., Guo Z., Wang X. J. Mater. Chem. A, 2015, 3: 19545.

[28]

Yan H., Bai J., Wang B., Yu L., Zhao L., Wang J., Liu Q., Liu J., Li Z. Electrochimica Acta, 2015, 154: 9.

[29]

Min S., Zhao C., Zhang Z., Wang K., Chen G., Qian X., Guo Z. RSC Adv., 2015, 5: 62571.

[30]

Min S., Zhao C., Zhang Z., Chen G., Qian X., Guo Z. J. Mater. Chem. A, 2015, 3: 3641.

[31]

Xia J., Chen F., Li J., Tao N. Nature Nanotechnology, 2009, 4: 505.

[32]

Stoller M. D., Park S., Zhu Y., An J., Ruoff R. S. Nano Letters, 2008, 8: 3498.

[33]

Wang Y., Shi Z., Huang Y., Ma Y., Wang C., Chen M., Chen Y. J. Phy. Chem. C, 2009, 113: 13103.

[34]

Marcano D. C., Kosynkin D. V., Berlin J. M., Sinitskii A., Sun Z., Slesarev A., Alemany L. B., Lu W., Tour J. M. ACS Nano, 2010, 4: 4806.

[35]

Xu X., Zhou H., Ding S., Li J., Li B., Yu D. J. Power Sources, 2014, 267: 641.

[36]

Tuinstra F., Koenig J. L. J. Chem. Phy., 1970, 53: 1126.

[37]

Di Fabio A., Giorgi A., Mastragostino M., Soavi F. J. Electrochem. Soc., 2001, 148: A845.

AI Summary AI Mindmap
PDF

171

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/