Fabrication of CeO2/rGO nanocomposites with oxidase-like activity and their application in colorimetric sensing of ascorbic acid

Jiangning Wang , Ping Su , Di Li , Ting Wang , Yi Yang

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (4) : 540 -545.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (4) : 540 -545. DOI: 10.1007/s40242-017-7002-4
Article

Fabrication of CeO2/rGO nanocomposites with oxidase-like activity and their application in colorimetric sensing of ascorbic acid

Author information +
History +
PDF

Abstract

Nanomaterial-based artificial enzymes(nanozymes) have shown great potential for application in colorimetric sensing. In this paper, the nanocomposites of CeO2 and reduced graphene oxide(rGO) were fabricated via a one-pot hydrothermal process, in which CeO2 nanoparticles were well anchored on the surface of rGO. The prepared CeO2/rGO nanocomposites exhibited excellent catalytic activity for the oxidation of 3,3′,5,5′-tetra-methylbenzidine(TMB) in the presence of O2. Compared with the individual CeO2 nanoparticles, the nanocomposites had a higher affinity and adsorptivity towards the substrate TMB, which was due to the combination of rGO. In addition, based on the oxidase-like activity of CeO2/rGO nanocomposites, a facile and sensitive colormetric sensor for ascorbic acid(AA) was investigated. The detection limit of AA was low(0.15 μmol/L) and the linear detection range was between 0.5 μmol/L and 40 μmol/L. Furthermore, the colorimetric system was used for the detection of AA in medicine and food analysis, such as tablets, beverage and milk powder.

Keywords

Nanozyme / Oxidase-like / Colorimetric / Ascorbic acid

Cite this article

Download citation ▾
Jiangning Wang, Ping Su, Di Li, Ting Wang, Yi Yang. Fabrication of CeO2/rGO nanocomposites with oxidase-like activity and their application in colorimetric sensing of ascorbic acid. Chemical Research in Chinese Universities, 2017, 33(4): 540-545 DOI:10.1007/s40242-017-7002-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu J., Chen Y., Wang W., Feng J., Liang M., Ma S., Chen X. J. Ag-ric. Food Chem., 2016, 64(1): 371.

[2]

Wu G. H., Wu Y. F., Liu X. W., Rong M. C., Chen X. M., Chen X. Anal. Chim. Acta, 2012, 745: 33.

[3]

Arrigoni O., Tullio M. C. D. Biochim. Biophys. Acta, 2002, 1569(1-3): 1.

[4]

Yang T., Zheng B., Liang H., Wan Y., Du J., Xiao D. Talanta, 2015, 132: 191.

[5]

Ma X., Yang J., Cai W., Zhu G., Liu J. Chem. Res. Chinese Univer-sities, 2016, 32(4): 702.

[6]

Ma Y., Zhao M., Cai B., Wang W., Ye Z., Huang J. Biosens. Bioelec-tron., 2014, 59: 384.

[7]

Meng H. M., Zhang X. B., Yang C., Kuai H., Mao G. J., Gong L., Zhang W., Feng S., Chang J. Anal. Chem., 2016, 88(11): 6057.

[8]

Tan H., Ma C., Gao L., Li Q., Song Y., Xu F., Wang T., Wang L. Chem.-Eur. J., 2014, 20(49): 16377.

[9]

Chen J., Ge J., Zhang L., Li Z., Li J., Sun Y., Qu L. Microchimica Acta, 2016, 183(6): 1847.

[10]

Wang G., Chen Z., Chen L. Nanoscale, 2011, 3(4): 1756.

[11]

Gao L., Zhuang J., Nie L., Zhang J., Zhang Y., Gu N., Wang T., Feng J., Yang D., Perrett S., Yan X. Nat. Nanotechnol., 2007, 2(9): 577.

[12]

Mu J., Wang Y., Zhao M., Zhang L. Chem. Commun., 2012, 48(19): 2540.

[13]

Zhang L. N., Deng H. H., Lin F. L., Xu X. W., Weng S. H., Liu A. L., Lin X. H., Xia X. H., Chen W. Anal. Chem., 2014, 86(5): 2711.

[14]

Jiang X., Sun C., Guo Y., Nie G., Xu L. Biosens. Bioelectron., 2015, 64: 165.

[15]

Wei H., Wang E. Chem. Soc. Rev., 2013, 42(14): 6060.

[16]

Wang X., Hu Y., Wei H. Inorg. Chem. Front., 2016, 3(1): 41.

[17]

Zhao K., Qi J., Yin H., Wang Z., Zhao S., Ma X., Wan J., Chang L., Gao Y., Yu R., Tang Z. J. Mater. Chem. A, 2015, 3(41): 20465.

[18]

Zhang F., Tian G., Wang H. M., Wang H. C., Zhang C., Cui Y. T., Huang J. Y., Shu Y. Chem. Res. Chinese Universities, 2016, 32(3): 461.

[19]

Asati A., Santra S., Kaittanis C., Nath S., Perez J. M. Angew. Chem., Int. Ed., 2009, 48(13): 2308.

[20]

Xiong Y., Chen S., Ye F., Su L., Zhang C., Shen S., Zhao S. Chem. Commun., 2015, 51(22): 4635.

[21]

Shi Y., Huang J., Wang J., Su P., Yang Y. Talanta, 2015, 143: 457.

[22]

Xie J., Cao H., Jiang H., Chen Y., Shi W., Zheng H., Huang Y. Anal. Chim. Acta, 2013, 796: 92.

[23]

Lin X. Q., Deng H. H., Wu G. W., Peng H. P., Liu A. L., Lin X. H., Xia X. H., Chen W. Analyst, 2015, 140(15): 5251.

[24]

Dong Y. L., Zhang H. G., Rahman Z. U., Su L., Chen X. J., Hu J., Chen X. G. Nanoscale, 2012, 4(13): 3969.

[25]

Huang X., Qi X., Boey F., Zhang H. Chem. Soc. Rev., 2012, 41(2): 666.

[26]

Zhang R., Su P., Yang Y. J. Sep. Sci., 2014, 37(22): 3339.

[27]

Srivastava M., Das A. K., Khanra P., Uddin M. E., Kim N. H., Lee J. H. J. Mater. Chem. A, 2013, 1(34): 9792.

[28]

Liu B., Huang Z., Liu J. Nanoscale, 2016, 8(28): 13562.

[29]

Zhang J. W., Zhang H. T., Du Z. Y., Wang X., Yu S. H., Jiang H. L. Chem. Commun., 2014, 50(9): 1092.

[30]

Ai L., Li L., Zhang C., Fu J., Jiang J. Chem. -Eur. J., 2013, 19(45): 15105.

AI Summary AI Mindmap
PDF

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/