Dynamic mechanism of relaxation paths occurring in TPA-DCPP: Roles of solvent and temperature

Qiulin Zhong , Ying Chen , Yinghui Wang , Xiaochun Chi , Yue Wang , Moucui Ni , Hanzhuang Zhang

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (3) : 400 -405.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (3) : 400 -405. DOI: 10.1007/s40242-017-6506-2
Article

Dynamic mechanism of relaxation paths occurring in TPA-DCPP: Roles of solvent and temperature

Author information +
History +
PDF

Abstract

The relaxation paths for triphenylamine(TPA)-2,3-dicyanopyrazino phenanthrene(DCPP), which has a pull-push structure, were investigated via steady-state, time-resolved spectroscopy involving transient absorption and time-correlated single photon counting. By changing the solvent polarity we found that an intramolecular charge transfer(ICT) state acting as a “bright” state was responsible for the fluorescence character of TPA-DCPP. Meanwhile, a “dark” state gradually appeared and competed with the ICT state. This was likely to be responsible for the polarity-dependent evolution of fluorescence intensity and fluorescence lifetime. The temperature-dependent fluorescence character of the TPA-DCPP in toluene exhibited ICT processes at high temperatures prior to the relaxation path from the initial excited state to the ground state. Our results provide useful insight into the optoelectronic properties of these kinds of molecules.

Keywords

Transient absorption spectroscopy / Ultrafast dynamics / Temperature-dependent / Polarity-dependent / Intramolecular charge transfer state

Cite this article

Download citation ▾
Qiulin Zhong, Ying Chen, Yinghui Wang, Xiaochun Chi, Yue Wang, Moucui Ni, Hanzhuang Zhang. Dynamic mechanism of relaxation paths occurring in TPA-DCPP: Roles of solvent and temperature. Chemical Research in Chinese Universities, 2017, 33(3): 400-405 DOI:10.1007/s40242-017-6506-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tang C. W., Van Slyke S. A. Appl. Phys. Lett., 1987, 51: 913.

[2]

Noginov M. A., Zhu G., Belgrave A. M., Bakker R., Shalaev V. M., Narimanov E. E., Stout S., Herz E., Suteewong T., Wiesner U. Na-ture, 2009, 460: 1110.

[3]

Zhang Q., Li J., Shizu K., Huang S., Hirata S., Miyazaki H., Adachi C., Chem J. A. J. Am. Chem. Soc., 2012, 134: 14706.

[4]

Tanaka H., Shizu K., Miyazaki H., Adachi C. Chem. Commun., 2012, 48: 11392.

[5]

Wang H., Xie L., Peng Q., Meng L. Q., Wang Y., Yi Y. P., Wang P. F. Adv. Mater., 2014, 26: 5198.

[6]

Zhang Q., Kuwabara H., Potscavage W. J., Huang S., Hatae Y., Shi-bata T., Adachi C., Chem J. A. J. Am. Chem. Soc., 2014, 136: 18070.

[7]

Jenekhe S. A., Lu L., Alam M. M. Macromolecules, 2001, 34: 7315.

[8]

Wu J., Liu W., Ge J., Zhang H. Y., Wang F. P. Chem. Soc. Rev., 2011, 40: 3483.

[9]

Justin Thomas K. R., Lin J. T., Velusamy M., Tao Chuen Y. T. Adv. Funct. Mater., 2004, 14: 83.

[10]

Kulkarni A. P., Wu P. T., Kwon T. W. J. Phys. Chem. B, 2005, 109: 19584.

[11]

Shen X. Y., Wang Y. J., Zhao E., Yuan W. Z., Liu Y., Lu P., Qin A. J., Ma Y. G., Sun J. Z., Tang B. Z. J. Phys. Chem. C, 2013, 117: 7334.

[12]

Zhao G. J., Chen R. K., Sun M. T., Liu J. Y., Liu G. Y., Li G. Y., Gao Y. L., Han K. L., Yang X. C., Sun L. Chem. Euro. J., 2008, 14: 6935.

[13]

Kovalenko S. A., Schanz R., Hennig H., Emsting N. P. J. Chem. Phys., 2001, 115: 3256.

[14]

Maus M., Rettig W., Jonusauskas G., Lapouyade R., Rulliere C. J. Phys. Chem. A, 1998, 102: 7393.

[15]

Gustavsson T., Coto P. B., Serrano-Andrés L., Fujiwara T., Lim E. C. J. Chem. Phys., 2009, 131: 031101.

[16]

Wang S., Yan X., Cheng Z., Zhang H. Y., Liu Y., Wang Y. Angew. Chem. Inter. Ed., 2015, 54: 13068.

[17]

Stalke S., Wild D. A., Lenzer T., Kopczynski M., Lohse P. W., Oum K. Phys. Chem. Chem. Phys., 2008, 10: 2180.

[18]

Druzhinin S. I., Kovalenko S. A., Senyushkina T., Zachariasse K. A. J. Phys. Chem. A, 2007, 111: 12878.

[19]

Cerullo G., Manzoni C., Lüer L., Polli D. Photochem. Photobio. Sci., 2007, 6: 135.

[20]

Lanzani G., Cerullo G., Polli D., Gambetta A., Zavelani-Rossi M., Gadermaier C. Phys. Stat. Sol., 2004, 201: 1116.

[21]

Yao L., Zhang S. T., Wang R., Li W. J., Shen F. Z., Yang B., Ma Y. G. Angew. Chem. Int. Ed., 2014, 53: 2119.

[22]

Gao B. R., Wang H. Y., Yang Z. Y., Wang H., Wang L., Jiang Y., Hao Y. W., Chen Q. D., Li Y. P., Ma Y. G., Sun H. B. J. Phys. Chem. C, 2011, 115: 16150.

[23]

Huang T. H., Hou J. Q., Kang Z. H., Wang Y. H., Lu R., Zhou H. P., Zhao X., Ma Y. G., Zhang H. Z. J. Photochem. Photobio. A: Chem., 2013, 261: 41.

[24]

Ishow E., Clavier G., Miomandre F., Rebarz M., Buntinx G., Poizat O. Phys. Chem. Chem. Phys., 2013, 15: 13922.

[25]

Zhao G. J., Han K. L. Acc. Chem. Res., 2012, 45: 404.

[26]

Zhao G. J., Liu J. Y., Zhou L. C., Han K. L. J. Phys. Chem. B, 2007, 111: 8940.

[27]

Zhou P., Song P., Liu J., Han K. L., He G. Z. Phys. Chem. Chem. Physics., 2009, 11: 9440.

[28]

Zhu H., Li M., Hu J., Wang X., Jie J. L., Guo Q. J., Chen C. F., Xia A. D. Scientific Reports, 2016, 6: 24313.

[29]

Sajadi M., Weinberger M., Wagenknecht H. A., Emsting N. P. Phys. Chem. Chem. Phys., 2011, 13: 17768.

[30]

Mohammed O. F. J. Phys. Chem. A, 2010, 114: 11576.

[31]

Horng M. L., Gardecki J. A. J. Phys. Chem., 1995, 99: 17311.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/