High selectivity to diphenyl carbonate synthesized via transesterification between dimethyl carbonate and phenol with C60-doped TiO2

Yingmin Qu , Hao Yang , Songlin Wang , Tong Chen , Gongying Wang

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (5) : 804 -810.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (5) : 804 -810. DOI: 10.1007/s40242-017-6500-8
Article

High selectivity to diphenyl carbonate synthesized via transesterification between dimethyl carbonate and phenol with C60-doped TiO2

Author information +
History +
PDF

Abstract

An environmentally friendly heterogeneous catalyst, C60-doped TiO2(denoted as C60-TiO2), was prepared and firstly used to catalyze the synthesis of diphenyl carbonate(DPC) via the transesterification of phenol and dimethyl carbonate(DMC). The characterization results of FTIR, XRD, XPS, SEM, TEM and digital optical microscope(MIC) show that C60 promotes the dispersion of TiO2 and the prepared conditions affect the dispersion and the electron density of Ti species. The C60-TiO2-8[n(Ti):n(C60)=8:1] prepared with toluene and calcined at 200 °C exhibits the best catalytic performance. The DPC selectivity of 86.5% attained over C60-TiO2-8 was much higher than that(about 50%) attained over Ti-based catalysts reported, which was originated from the electronic effect of C60 and the efficient dispersion of Ti species by C60. The phenol conversion slowly decreased from 34.4% to 26.7% after four consecutive runs due to the leach of Ti species. It also suggested that the C60 could relieve the leach of Ti species compared with other Ti-based catalysts reported. Moreover, C60-TiO2-8 exhibited excellent catalytic behavior for disproportionation of methyl phenyl carbonate(MPC) with high DPC selectivity.

Keywords

C60 / TiO2 / Diphenyl carbonate / Transesterification

Cite this article

Download citation ▾
Yingmin Qu, Hao Yang, Songlin Wang, Tong Chen, Gongying Wang. High selectivity to diphenyl carbonate synthesized via transesterification between dimethyl carbonate and phenol with C60-doped TiO2. Chemical Research in Chinese Universities, 2017, 33(5): 804-810 DOI:10.1007/s40242-017-6500-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang Z. Q., Yang X. G., Liu S. Y., Zhang H., Wang G. Y. Chem. Res. Chinese Universties, 2016, 32(3): 512.

[2]

Haubrock J., Raspe M., Versteeg G. F., Kooijman H. A., Taylor R., Hogendoorn J. A. Ind. Eng. Chem. Res., 2016, 47: 9854.

[3]

Deshmukh K. M., Qureshi Z. S., Dhake K. P., Bhanage B. M. Catal. Commun., 2010, 12: 207.

[4]

Kim Y. T., Park E. D. Appl. Catal. A: Gen., 2009, 356: 211.

[5]

Joshi U. A., Choi S. H., Jang J. S., Lee J. S. Catal. Lett., 2008, 123: 115.

[6]

Luo S. W., Chen T., Tong D. S., Zeng Y., Lei Y. C., Wang G. Y. Chin. J. Catal., 2007, 28: 937.

[7]

Zhou X., Ge X., Tang R. Z., Chen T., Wang G. Y. Chin. J. Catal., 2014, 35: 481.

[8]

Cao M., Meng Y. Z., Lu Y. X. Catal. Commun., 2005, 6: 802.

[9]

Li Z. H., Wang Y. J., Ding X. S., Zhao X. Q. Journal of Natural Gas Chemistry, 2009, 18: 104.

[10]

Wang S. L., Tang R. Z., Zhang Y. Z., Chen T., Wang G. Y. Chem. Eng. Sci., 2015, 138: 93.

[11]

Tong D. S., Yao J., Wang Y., Niu H. Y., Wang G. Y. J. Mol. Catal. A: Chem., 2007, 268: 120.

[12]

Tang R. Z., Chen T., Chen Y., Zhang Y. Z., Wang G. Y. Chin. J. Catal., 2014, 35: 457.

[13]

Kim W. B., Lee J. S. Catal. Lett., 1999, 59: 83.

[14]

Wang S., Bai R., Mei F., Li G. Catal. Commun., 2009, 11: 202.

[15]

Tong D. S., Chen T., Yao J., Wang Y., Wang G. Y., Shi D. C., Li Z., Chen Z. M. Chin. J. Catal., 2007, 28: 190.

[16]

Meng Q. R., Bai J., Guo S. J., Li C. P. Chem. Res. Chinese Universi-ties, 2015, 31(6): 1072.

[17]

Li Q. M. Chem. Res. Chinese Universities, 2013, 29(5): 1011.

[18]

Tong H., Li H. L., Zhang X. G. Carbon, 2007, 45: 2424.

[19]

Osuna S., Morera J., Cases M., Morokuma K., Sola M. J. Phys. Chem. A, 2009, 113: 9721.

[20]

Niu F., Wu J., Zhang L., Li P., Zhu J., Wu Z., Song W. ACS Catal., 2011, 1: 1158.

[21]

Nagashima H., Nakaoka A., Tajima S., Saito Y., Itoh K. Chem. Lett., 1992, 7: 1361.

[22]

Beejapur H. A., Campisciano V., Franchi P., Lucarini M., Giacalone F. Chem. Cat. Chem., 2014, 6: 2419.

[23]

Lin J., Zong R. L., Zhou M., Zhu Y. F. Appl. Catal. B: Environ., 2009, 89: 425.

[24]

Yu J. G., Ma T. T., Liu G., Cheng B. Dalton Trans., 2011, 40: 6635.

[25]

Zhang L., Wang Y., Xu T., Zhu S., Zhu Y. J. Mol. Catal. A: Chem., 2007, 331: 7.

[26]

Yokosuka Y., Oki K., Nishikiori H., Tatsumi Y., Tanaka N., Fujii T. Res. Chem. Intermed., 2009, 35: 43.

[27]

Bonelli B., Cozzolino M., Tesser R., Di Serio M., Piumetti M., Gar-rone E., Santacesari E. J. Catal., 2007, 246: 293.

[28]

Ruoff R. S., Tse D. S., Malhotra R., Lorents D. C. J. Phys. Chem., 1993, 97: 3379.

[29]

Li B., Tang R., Chen T., Wang G. Chin. J. Catal., 2012, 33: 603.

[30]

Ge X., Li B. J., Hu J., Chen T., Wang G. Y., Hu X. T. Chem. Eng., 2011, 39: 061.

[31]

Wang Q., Li C. H., Guo M., Luo S. J., Hu C. W. Inorg. Chem. Front., 2015, 2: 47.

[32]

Coq B., Brotons V., Planeix J. M., de Menorval L. C., Dutartre R. J. catal., 1998, 176: 358.

[33]

Luo Z., Wang Y., Zhang Y., Wei D., Jiang J., Wang G. Y. Fine Chem., 2008, 25: 813.

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/