Solvothermal synthesis of magnetic Fe3O4 nanospheres and their efficiency in photo-Fenton degradation of xylenol orange

Kai Zheng , Mingyu Di , Jubo Zhang , Wenhui Bao , Daxin Liang , Guangsheng Pang , Zhenxing Fang , Chunyuan Li

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (4) : 648 -654.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (4) : 648 -654. DOI: 10.1007/s40242-017-6493-3
Article

Solvothermal synthesis of magnetic Fe3O4 nanospheres and their efficiency in photo-Fenton degradation of xylenol orange

Author information +
History +
PDF

Abstract

Magnetic Fe3O4 nanospheres with a average diameter of (201±0.5) nm were synthesized at 200 °C via a solvothermal method. The as-synthesized Fe3O4 nanospheres performed an efficiency in the Fenton degradation of xylenol orange with a degradation rate of 90%—95%. Additionally, the catalyst was easily recyclable and the recovery rate was greater than 90%. Moreover, the catalyst could be regenerated under an ultrasonic treatment, and the degradation performance remained essentially the same. More importantly, the degradation rate varied with respect to the amount of H2O2 and the pH of the best reaction process. And the reaction efficiency was achieved with 1.5 mL of H2O2 in an acidic environment.

Keywords

Magnetic / Fe3O4 nanosphere / Fenton degradation / Solvothermal / Xylenol orange

Cite this article

Download citation ▾
Kai Zheng, Mingyu Di, Jubo Zhang, Wenhui Bao, Daxin Liang, Guangsheng Pang, Zhenxing Fang, Chunyuan Li. Solvothermal synthesis of magnetic Fe3O4 nanospheres and their efficiency in photo-Fenton degradation of xylenol orange. Chemical Research in Chinese Universities, 2017, 33(4): 648-654 DOI:10.1007/s40242-017-6493-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Saldivar-Ramirez M. M., Sanchez-Torres C. G., Cortes-Hernandez D. A., Escobedo-Bocardo J. C., Almanza-Robles J. M., Larson A., Resendiz-Hernandez P. J., Acuna-Gutierrez I. O. Journal of Materials Science, Materials in Medicine, 2014, 25: 2229.

[2]

Ge Y., Xiang Y., He Y., Ji M., Song G. Desalination and Water Treatment, 2015, 57: 9837.

[3]

Wang Z., Yin L., Chen Z., Zhou G., Shi H. Journal of Nanomaterials, 2014, 2014: 1.

[4]

Kim J., Lee J. E., Lee S. H., Yu J. H., Lee J. H., Park T. G., Hyeon T. Advanced Materials, 2008, 20: 478.

[5]

Ding N., Yan N., Ren C. L., Chen X. G. Anal. Chem., 2010, 82: 5897.

[6]

Emadi H., Nemati Kharat A. Materials Research Bulletin, 2013, 48: 3994.

[7]

Yang C., Wu J., Hou Y. Chem. Commun., 2011, 47: 5130.

[8]

Liu X. D., Chen H., Liu S. S., Ye L. Q., Li Y. P. Materials Research Bulletin, 2015, 62: 217.

[9]

Bautista P., Mohedano A. F., Casas J. A., Zazo J. A., Rodriguez J. J. J. Chem. Technology & Biotechnology, 2008, 83: 1323.

[10]

Nguyen T. D., Phan N. H., Do M. H., Ngo K. T. J. Hazardous Materials, 2011, 185: 653.

[11]

Daud N. K., Hameed B. H. J. Hazardous Materials, 2010, 176: 938.

[12]

Daud N. K., Ahmad M. A., Hameed B. H. Chemical Engineering Journal, 2010, 165: 111.

[13]

Tian S. H., Tu Y. T., Chen D. S., Chen X., Xiong Y. Chemical Engineering Journal, 2011, 169: 31.

[14]

Liang D. X., Li J., Pang G. S. J. Mater. Sci., 2016, 51: 5412.

[15]

Santos M. S. F., Alves A., Madeira L. M. Chemical Engineering Journal, 2011, 175: 279.

[16]

Xiao J., Wang C., Lyu S., Liu H., Jiang C., Lei Y. Separation and Purification Technology, 2016, 169: 202.

[17]

Xu L., Wang J. Separation and Purification Technology, 2015, 149: 255.

[18]

Guo S., Zhang G., Yu J. C. Journal of Colloid and Interface Science, 2015, 448: 460.

[19]

Cheng H., Chou S., Chen S., Yu C. Journal of Environmental Sciences, 2014, 26: 1307.

[20]

Fu L., Zhao Z., Ma J., Hu X. Catal. Commun., 2015, 65: 96.

[21]

Tokumura M., Shibusawa M., Kawase Y. Chemical Engineering Science, 2013, 100: 212.

[22]

Bokare A. D., Choi W. J. Hazardous Materials, 2014, 275: 121.

[23]

Pignatello J. J., Oliveros E., MacKay A. Critical Reviews in Environmental Science and Technology, 2006, 36: 1.

[24]

Torrades F., García-Montaño J. Dyes and Pigments, 2014, 100: 184.

[25]

Sarrai A., Hanini S., Merzouk N., Tassalit D., Szabó T., Hernádi K., Nagy L. Materials, 2016, 9: 428.

[26]

Lipczynska-Kochany E., Kochany J. Chemosphere, 2008, 73: 745.

[27]

Malato S., Fernández-Ibáñez P., Maldonado M. I., Blanco J., Gernjak W. Catalysis Today, 2009, 147: 1.

[28]

Masomboon N., Chen C. W., Anotai J., Lu M. C. Chemical Engineering Journal, 2010, 159: 116.

[29]

Sun G., Dong B., Cao M., Wei B., Hu C. Chemistry of Materials, 2011, 23: 1587.

[30]

Zhang H., Zhu G. Applied Surface Science, 2012, 258: 4952.

[31]

Mukhopadhyay A., Joshi N., Chattopadhyay K., De G. ACS Applied Materials & Interfaces, 2012, 4: 142.

[32]

Hu A., Chen X., Tang Q., Zeng B. Ceramics International, 2014, 40: 14713.

[33]

Ni S., Lin S., Pan Q., Yang F., Huang K., He D. Journal of Physics D: Applied Physics, 2009, 42: 055004.

[34]

Hojati-Talemi P., Azadmanjiri J., Simon G. P. Materials Letters, 2010, 64: 1684.

[35]

Huang Y., Zhang L., Huan W., Liang X., Liu X., Yang Y. Glass Physics and Chemistry, 2010, 36: 325.

[36]

Zhang J., Yao Y., Huang T., Yu A. Electrochimica Acta, 2012, 78: 502.

[37]

Liang X., Shi H., Jia X., Yang Y., Liu X. Materials Sciences and Applications, 2011, 02: 1644.

[38]

Xing R., Xu F., Liu S., Niu J. Materials Letters, 2014, 134: 71.

[39]

Shariatinia Z., Nikfar Z. Inter. J. Biolog. Macro., 2013, 60: 226.

[40]

Yang Z., Huang R., Qi W., Tong L., Su R., He Z. Chemical Engineering Journal, 2015, 280: 90.

[41]

Pipit F., Shanty M., Ferry I., Rino R. M., Mikrajuddin A. Research and Development on Nanotechnology in Indonesia, 2014, 1: 23.

[42]

Zhu L. P., Xiao H. M., Wei D., Yang G., Fu S. Y. Crystal Growth & Design, 2008, 8: 957.

[43]

Daou T. J., Pourroy G., Bégin-Colin S., Grenèche J. M., Ulhaq-Bouillet C., Legaré P., Bernhardt P., Leuvrey C., Rogez G. Chemistry of Materials, 2006, 18: 4399.

[44]

Vereda F., Vicente J., Segovia-Gutierrez J. P., Hidalgo-Alvarez R. Journal of Applied Physics, 2011, 110: 063520.

[45]

Cheng Z., Gao Z., Ma W., Sun Q., Wang B., Wang X. Chemical Engineering Journal, 2012, 209: 451.

[46]

Mishra A. K., Ramaprabhu S. Journal of Materials Chemistry, 2011, 21: 7467.

[47]

Liu H., Wu J., Min J. H., Zhang X., Kim Y. K. Materials Research Bulletin, 2013, 48: 551.

[48]

Herney-Ramirez J., Vicente M. A., Madeira L. M. Applied Catalysis B: Environmental, 2010, 98: 10.

[49]

Guo S., Zhang G., Wang J. Journal of Colloid and Interface Science, 2014, 433: 1.

[50]

Xia J., Wang A., Liu X., Su Z. X. Applied Surface Science, 2011, 257: 9724.

[51]

Boruah P. K., Sharma B., Karbhal I., Shelke M. V., Das M. R. J. Hazardous Materials, 2017, 325: 90.

[52]

Ma J., Guo S., Guo X., Ge H. J. Applied Surface Science, 2015, 353: 1117.

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/