A DFT+U investigation on methylamine decomposition catalyzed by Pt4 cluster supported on oxygen defective rutile(110) TiO2

Cunqin Lü , Jianhong Liu , Chun Jin , Yong Guo , Guichang Wang

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (3) : 406 -414.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (3) : 406 -414. DOI: 10.1007/s40242-017-6489-z
Article

A DFT+U investigation on methylamine decomposition catalyzed by Pt4 cluster supported on oxygen defective rutile(110) TiO2

Author information +
History +
PDF

Abstract

The adsorption and decomposition mechanisms of methylamine catalyzed by Pt4 cluster supported on rutile(110) titania[namely, Pt4/TiO2-R(110)] were investigated via density functional theory slab calculations with Hubbard corrections(DFT+U). The adsorption energies under the most stable configuration of the possible species and the energy barriers of the possible elementary reactions involved in methylamine decomposition were obtained. Through systematic calculations for the reaction mechanism of methylamine decomposition on the Pt4/TiO2-R(110), the most possible decomposition path is CH3NH2→CH2NH2+H→CH2NH+2H→CHNH+3H→HCN+4H→ CN+5H, which is similar to that of methylamine dissociation catalyzed by Pt(100) surface.

Keywords

Pt4 cluster / Methylamine decomposition / Titania / Density functional theory slab calculations with Hubbard correction

Cite this article

Download citation ▾
Cunqin Lü, Jianhong Liu, Chun Jin, Yong Guo, Guichang Wang. A DFT+U investigation on methylamine decomposition catalyzed by Pt4 cluster supported on oxygen defective rutile(110) TiO2. Chemical Research in Chinese Universities, 2017, 33(3): 406-414 DOI:10.1007/s40242-017-6489-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sheets R. W., Blyholder G. J. Catal., 1981, 67: 308.

[2]

Baca A. G., Schulz M. A., Shirley D. A. J. Chem. Phys., 1985, 83: 6001.

[3]

Pearlstine K. A., Friend C. M. J. Am. Chem. Soc., 1986, 108: 5842.

[4]

Chorkendorff I., Russell J. N. Jr, Yates J. T. Jr J. Chem. Phys., 1987, 86: 4692.

[5]

Thomas P. A., Masel R. I. J. Vac. Sci. Technol. A, 1987, 5: 1106.

[6]

Schoofs G. R., Benziger J. B. J. Phys. Chem., 1988, 92: 741.

[7]

Bridge M. E., Somers J. Vacuum., 1988, 38: 317.

[8]

Hwang S. Y., Kong A. C. F., Schmidt L. D. J. Phys. Chem., 1989, 93: 8327.

[9]

Gardin D. E., Somorjai G. A. J. Phys. Chem., 1992, 96: 9424.

[10]

Johnson D. F., Wang Y., Parmeter J. E., Hills M. M., Weinberg W. H. J. Am. Chem. Soc., 1992, 114: 4279.

[11]

Chang C., Khong C., Saiki R. J. Vac. Sci. Technol. A, 1993, 11: 2122.

[12]

Bafrali R., Bell A. T. Surf. Sci., 1994, 316: 267.

[13]

Jentz D., Trenary M., Peng X. D., Stair P. Surf. Sci., 1995, 341: 282.

[14]

Chen J. J., Winograd N. Surf. Sci., 1995, 326: 285.

[15]

Nunney T. S., Birtill J. J., Raval R. Surf. Sci., 1999, 427: 282.

[16]

Esrafili M. D., Nurazar R. Surf. Sci., 2014, 626: 44.

[17]

Kato T., Kang S. Y., Yamable T. J. Phys. Chem. B, 2001, 105: 10340.

[18]

Mui C., Wang G. T., Bent S. F., Musgrave C. B. J. Chem. Phys., 2001, 114: 10170.

[19]

Oliva C. v. d., Berg C., Niemantsverdriet J. W., Curulla-Ferré D. J. Catal., 2007, 248: 38.

[20]

Oliva C. v. d., Berg C., Niemantsverdriet J. W., Curulla-Ferré D. J. Catal., 2007, 245: 436.

[21]

Lv C. Q., Li J., Ling K. C., Wang G. C. J. Chem. Phys., 2010, 132: 044111.

[22]

Lv C. Q., Li J., Ling K. C., Shang Z. F., Wang G. C. Surf. Sci., 2010, 604: 779.

[23]

Lv C. Q., Liu J. H., Guo Y., Wang G. C. Phys. Chem. Chem. Phys., 2012, 14: 6869.

[24]

Liu J. H., Lv C. Q., Guo Y., Wang G. C. Appl. Surf. Sci., 2013, 271: 291.

[25]

Deng Z. G., Lu X. Q., Wen Z. Q., Wei S. X., Zhu Q., Jin D. L., Shi X. F., Guo W. Y. RSC Adv., 2014, 4: 12266.

[26]

Lv C. Q., Liu J. H., Song X. F., Guo Y., Wang G. C. J. Mol. Model., 2014, 20: 2137.

[27]

Liu J. H., Lv C. Q., Jin C., Guo Y., Wang G. C. RSC Adv., 2015, 5: 20208.

[28]

Asahi R., Morikawa T., Ohwaki T., Aoki K., Taga Y. Science, 2001, 293: 269.

[29]

Nedeljkovic J. M., Micic O. I., Ahrenkiel S. P., Miedaner A., Nozik A. J. J. Am. Chem. Soc., 2004, 126: 2632.

[30]

Gratzel M. Nature, 2001, 414: 338.

[31]

Irie H., Watanabe Y., Hashimoto K. J. Phys. Chem. B, 2003, 107: 5483.

[32]

Burda C., Lou Y., Chen X., Samia A. C. S., Stout J., Gole J. L. Nano Lett., 2003, 3: 1049.

[33]

Liao L. F., Wu W. C., Chang C. C., Lin J. L. J. Phys. Chem. B, 2001, 105: 5928.

[34]

Kominami H., Nishimune H., Ohta Y., Arakawa Y., Inaba T. Appl. Catal. B: Environ., 2012, 111/112: 297.

[35]

Lv C. Q., Liu J. H., Guo Y., Li X. M., Wang G. C. Appl. Surf. Sci., 2016, 389: 411.

[36]

Kresse G., Furthmüller J. Comput. Mater. Sci., 1996, 6: 15.

[37]

Kresse G., Hafner J. Phys. Rev. B, 1994, 49: 14251.

[38]

Perdew J. P., Chevary J. A., Vosko S. H., Jackson K. A., Pederson M. R., Singh D. J., Fiolhais C. Phys. Rev. B, 1992, 46: 6671.

[39]

Kresse G., Joubert D. Phys. Rev. B, 1999, 59: 1758.

[40]

Blöchl P. E. Phys. Rev. B, 1994, 50: 17953.

[41]

Yang J., Lv C. Q., Guo Y., Wang G. C. J. Chem. Phys., 2012, 136: 104107.

[42]

Diebold U. Surf. Sci. Rep., 2003, 48: 53.

[43]

Monkhorst H. J., Pack J. D. Phys. Rev. B, 1976, 13: 5188.

[44]

Henkelman G., Uberuaga B. P., Jonsson H. J. Chem. Phys., 2000, 113: 9901.

[45]

Liu J. H., C. Q., Jin C., Guo Y., Wang G. C. Chem. Res. Chinese Universities, 2016, 32(2): 234.

[46]

Lv C. Q., Ling K. C., Wang G. C. J. Chem. Phys., 2009, 131: 144704.

[47]

Wang G. C., Zhou Y. H., Morikawa Y., Nakamura J., Cai Z. S., Zhao X. Z. J. Phys. Chem. B, 2015, 109: 12431.

[48]

Liu Z. P., Hu P. J. Chem. Phys., 2001, 115: 4977.

[49]

Wang H. F., Liu Z. P. J. Am. Chem. Soc., 2008, 130: 10996.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/