PDF
Abstract
Magnetic MnFe2O4-bentonite was synthesized by chemical co-precipitation method(CCM) and applied as catalyst in heterogeneous activation of persulfate(PS) to oxidize a target pollutant, 2,4-dichlorophenol(2,4-DCP), in aqueous solutions. The surface morphology and structure of MnFe2O4-bentonite were characterized by X-ray diffraction( XRD), scanning electron microscope(SEM), energy dispersive X-ray(EDX) and X-ray photoelectron spectroscopy(XPS) analyses.The catalytic activity of MnFe2O4-bentonite for 2,4-DCP degradation was evaluated considering the effects of various process parameters, such as mass ratio of MnFe2O4 to bentonite, concentration of catalyst, PS concentration, and pH. The MnFe2O4-bentonite hybrid exhibited higher catalytic activity than pure MnFe2O4. Treatment with 5 g/L MnFe2O4-bentonite at 30 °C for 240 min oxidized 92% of 100 mg/L 2,4-DCP(70.2% mineralization), whereas treatment with pure MnFe2O4 under the same condition oxidized only 70% of the pollutant. This result indicate the enhanced performance of the activated PS. Moreover, MnFe2O4-bentonite exhibits stable performance with minimal loss in activity after five successive runs. Thus, MnFe2O4-bentonite could be a promising catalyst in oxidative degradation of 2,4-DCP.
Keywords
2,4-Dichlorophenol
/
Advanced oxidation process
/
Heterogeneous reaction
/
MnFe2O4-bentonite
/
Sulfate radical
Cite this article
Download citation ▾
Yongsheng Zhao, Qin Li, Hejun Ren, Rui Zhou.
Activation of persulfate by magnetic MnFe2O4-bentonite for catalytic degradation of 2,4-dichlorophenol in aqueous solutions.
Chemical Research in Chinese Universities, 2017, 33(3): 415-421 DOI:10.1007/s40242-017-6485-3
| [1] |
Sathishkumar M., Binupriya A. R., Kavitha D., Selvakumar R., Jayabalan R., Choi J. G., Yun S. E. Chemical Engineering Journal, 2009, 147(2/3): 265.
|
| [2] |
Shao Y., Xu Z., Wan H., Wan Y., Chen H., Zheng S., Zhu D. Cataly-sis Communications, 2011, 12(15): 1405.
|
| [3] |
Herney-Ramirez J., Vicente M. A., Madeira L. M. Applied Catalysis B: Environmental, 2010, 98(1/2): 10.
|
| [4] |
Zhou Y., Jin X. Y., Lin H., Chen Z. L. Chemical Engineering Jour-nal, 2011, 166(1): 176.
|
| [5] |
Ma Z. C., Li J. S., Xing S. T. Chem. J. Chinese Universities, 2017, 38(4): 636.
|
| [6] |
Tsitonaki A., Petri B., Crimi M., MosbÆK H., Siegrist R. L., Bjerg P. L. Critical Reviews in Environmental Science and Technology, 2010, 40(1): 55.
|
| [7] |
Ji Y., Dong C., Kong D., Lu J., Zhou Q. Chemical Engineering Journal, 2015, 263: 45.
|
| [8] |
Chu W., Li D., Gao N., Templeton M. R., Tan C., Gao Y. Water Re-search, 2015, 72: 340.
|
| [9] |
Rodriguez S., Vasquez L., Costa D., Romero A., Santos A. Chemos-phere, 2014, 101: 86.
|
| [10] |
Yang Q., Choi H., Chen Y., Dionysiou D. D. Applied Catalysis B: Environmental, 2008, 77(3/4): 300.
|
| [11] |
Yan J., Lei M., Zhu L., Anjum M. N., Zou J., Tang H. Journal of Hazardous Materials, 2011, 186(2/3): 1398.
|
| [12] |
Zhao Y. S., Sun C., Sun J. Q., Zhou R. Separation and Purification Technology, 2015, 142: 182.
|
| [13] |
Yao Y., Cai Y., Lu F., Wei F., Wang X., Wang S. Journal of Ha-zardous Materials, 2014, 270: 61.
|
| [14] |
Zhao Y., Zhao Y. S., Zhou R., Mao Y., Tang W., Ren H. J. RSC Ad-vances, 2016, 6(42): 35441.
|
| [15] |
Feng J., Wang Y., Zou L., Li B., He X., Liu S., Chen T., Fan Z., Ren Y., Lü Y. Chem. Res. Chinese Universities, 2015, 31(3): 439.
|
| [16] |
Zhang T., Zhu H., Croue J. P. Environmental Science Technology, 2013, 47(6): 2784.
|
| [17] |
Shi L. N., Zhang X., Chen Z. L. Water Research, 2011, 45(2): 886.
|
| [18] |
Yan J., Han L., Gao W., Xue S., Chen M. Bioresource Technology, 2014, 175C: 269.
|
| [19] |
Wu K., Hu G., Du K., Peng Z., Cao Y. Materials Letters, 2015, 152: 217.
|
| [20] |
Jia H., Wang C. Chemical Engineering Journal, 2012, 191: 202.
|
| [21] |
Zhang C., Zhou M., Ren G., Yu X., Ma L., Yang J., Yu F. Water Re-search, 2015, 70(1): 414.
|
| [22] |
Fang G. D., Dionysiou D. D., Al-Abed S. R., Zhou D. M. Applied Catalysis B: Environmental, 2013, 129: 325.
|
| [23] |
Shao L., Ren Z., Zhang G., Chen L. Materials Chemistry and Phys-ics, 2012, 135(1): 16.
|
| [24] |
Tang J., Chen Q., Xu L., Zhang S., Feng L., Cheng L., Xu H., Liu Z., Peng R. ACS Applied Materials & Interfaces, 2013, 5(9): 3867.
|
| [25] |
Kruk M., Jaroniec M. Chemistry of Materials, 2001, 13(10): 3169.
|
| [26] |
Amin M., Alazba A., Shafiq M. Sustainability, 2015, 7(12): 15302.
|
| [27] |
Tan C., Gao N., Chu W., Li C., Templeton M. R. Separation and Pu-rification Technology, 2012, 95: 44.
|
| [28] |
Hashemian S. African Journal of Biotechnology, 2010, 9: 8667.
|
| [29] |
Liang C., Wang Z. S., Bruell C. J. Chemosphere, 2007, 66(1): 106.
|
| [30] |
Hou L., Zhang H., Xue X. Separation and Purification Technology, 2012, 84: 147.
|
| [31] |
Wang Y., Wu X., Zhang W., Huang S. Journal of Magnetism and Magnetic Materials, 2016, 404: 58.
|
| [32] |
Leem G., Zhang S., Jamison A. C., Galstyan E., Rusakova I., Lorenz B., Litvinov D., Lee T. R. ACS Applied Materials Interfaces, 2010, 2(10): 2789.
|
| [33] |
Sahoo B., Sahu S. K., Nayak S., Dhara D., Pramanik P. Catalysis Science & Technology, 2012, 2(7): 1367.
|
| [34] |
Costa R. C., Lelis M. F., Oliveira L. C., Fabris J. D., Ardisson J. D., Rios R. R., Silva C. N., Lago R. M. Journal of Hazardous Materials, 2006, 129(1―3): 171.
|
| [35] |
Neta P., Huie R. E., Ross A. B. Journal of Physical and Chemical Reference Data, 1988, 17(3): 1027.
|
| [36] |
Buxton G. V., Greenstock C. L., Helman W. P., Ross A. B., Tsang W. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513.
|
| [37] |
Li R., Gao Y., Jin X., Chen Z., Megharaj M., Naidu R. Journal of Colloid and Interface Science, 2015, 438: 87.
|
| [38] |
Li X., Zhou M., Pan Y., Xu L. Chemical Engineering Journal, 2017, 307: 1092.
|