Hyper-crosslinked porous polymer based on bulk rigid monomer for gas and dye absorptions

Liang Shan , Li Wang , Yong Fan , Lanlan Shen , Shengyan Wang , Jianing Xu

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (3) : 479 -483.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (3) : 479 -483. DOI: 10.1007/s40242-017-6467-5
Article

Hyper-crosslinked porous polymer based on bulk rigid monomer for gas and dye absorptions

Author information +
History +
PDF

Abstract

Using the rigid 3,3-bis(4-hydroxyphenyl)-2-(4-tritylphenyl)isoindolin-1-one with polar functional groups as a building block and formaldehyde dimethyl acetal(FDA) as a crossinglinker, a new hyper-crosslinked polymer (HCP) was synthesized via Friedel-Crafts alkylation reaction promoted by anhydrous FeCl3. The synthesized HCP is insoluble in boiled water and common organic solvents. Moreover, it shows a good CO2 capture capacity even if its surface area is not very high, and the absolute CO2 uptake capacity of it is 3.05 mmol/g. This can be attributed to the introduction of polar hydroxyl and lactam groups into the skeleton of the polymer which provides effective adsorption sites for CO2. In addition, the synthesized HCP also exhibits good adsorption capacity for organic dyes in water, especially for crystal violet.

Keywords

Hyper-crosslinked polymer / CO2 adsorption / Dye adsorption

Cite this article

Download citation ▾
Liang Shan, Li Wang, Yong Fan, Lanlan Shen, Shengyan Wang, Jianing Xu. Hyper-crosslinked porous polymer based on bulk rigid monomer for gas and dye absorptions. Chemical Research in Chinese Universities, 2017, 33(3): 479-483 DOI:10.1007/s40242-017-6467-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen Q., Luo M., Hammershoj P., Zhou D., Han Y., Laursen B. W., Yan C. G., Han B. H. J. Am. Chem. Soc., 2012, 134: 6084.

[2]

Luo Y. L., Li B. Y., Wang W., Wu K. B., Tan B. Adv. Mater., 2012, 24: 5703.

[3]

Li B. Y., Guan Z. H., Wang W., Yang X. J., Hu J. L., Tan B., Li T. Adv. Mater., 2012, 24: 3390.

[4]

Gu C., Huang N., Gao J., Xu F., Xu Y. H., Jiang D. L. Angew. Chem., Int. Ed., 2014, 53: 4850.

[5]

Fang Q. R., Wang J. H., Gu S., Kaspar R. B., Zhuang Z. B., Zheng J., Guo H. X., Qiu S. L., Yan Y. S. J. Am. Chem. Soc., 2015, 137: 8352.

[6]

Cote A. P., Benin A. I., Ockwig N. W., O’Keeffe M., Matzger A. J., Yaghi O. M. Science, 2005, 310: 1166.

[7]

Feng X., Ding X. S., Jiang D. L. Chem. Soc. Rev., 2012, 41: 6010.

[8]

Ding S. Y., Wang W. Chem. Soc. Rev., 2013, 42: 548.

[9]

Wood C. D., Tan B., Trewin A., Niu H. J., Bradshaw D., Rosseinsky M. J., Khimyak Y. Z., Campbell N. L., Kirk R., Stocker E., Cooper A. I. Chem. Mater., 2007, 19: 2034.

[10]

McKeown N. B., Budd P. M. Macromolecules, 2010, 43: 5163.

[11]

Jiang J. X., Su F., Trewin A., Wood C. D., Campbell N. L., Niu H. J., Dickinson C., Ganin A. Y., Rosseinsky M. J., Khimyak Y. Z., Cooper A. I. Angew. Chem. Int. Ed., 2007, 46: 8574.

[12]

Xu Y. H., Jin S. B., Xu H., Nagai A., Jiang D. L. Chem. Soc. Rev., 2013, 42: 8012.

[13]

Ben T., Ren H., Ma S. Q., Cao D. P., Lan J. H., Jing X. F., Wang W. C., Xu J., Deng F., Simmons J. M., Qiu S. L., Zhu G. S. Angew. Chem. Int. Ed., 2009, 48: 9457.

[14]

Luo Y. L., Zhang S. C., Ma Y. X., Wang W., Tan B. E. Polym. Chem., 2013, 4(1): 126.

[15]

Dawson R., Ratvijitvech T., Corker M., Laybourn A., Khimyak Y. Z., Looper A. I., Adams D. T. Polym. Chem., 2012, 3: 2034.

[16]

Martin C. F., Stockel E., Clowes R., Adams D. J., Cooper A. I., Pis J. J., Rubiera F., Pevida C. J. Mater. Chem., 2011, 21: 5475.

[17]

Dawson R., Stevens L. A., Drage T. C., Snape C. E., Smith M. W., Adams D. J., Cooper A. I. J. Am. Chem. Soc., 2012, 134: 10741.

[18]

Zhang C., Zhu P. C., Tan L. X., Liu J. M., Tan B., Yang X. L., Xu H. B. Macromoecules, 2015, 48: 8509.

[19]

Li B. Y., Gong R. N., Wang W., Huang X., Zhang W., Li H. M., Hu C. X., Tan B. Macromolecules, 2011, 44: 2410.

[20]

Yao S. W., Yang X., Yu M., Zhang Y. H., Jiang J. X. J. Mater. Chem. A, 2014, 2: 8054.

[21]

Dawson R., Stockel E., Holst J. R., Adams D. J., Cooper A. I. Ener-gy Environ. Sci., 2011, 4: 4239.

[22]

Zheng J. F., Wang J., Zhang S. B., Yuan T., Yang H. J. Power Sources, 2014, 245: 1005.

[23]

Luo Y. L., Li B. Y., Wang W., Wu K. B., Tan B. E. Adv. Mater., 2012, 24: 5703.

[24]

Ren H., Ben T., Sun F. X., Guo M. Y., Jing X. F., Ma H. P., Cai K., Qiu S. L., Zhu G. S. J. Mater. Chem., 2011, 21: 10348.

[25]

Jing X. F., Zou D. L., Cui P., Ren H., Zhu G. S. J. Mater. Chem. A, 2013, 1: 13926.

[26]

Weber J., Antonietti M., Thomas A. Macromolecules, 2008, 41: 2880.

[27]

Dawson R., Cooper A. I., Adams D. J. Polym. Int., 2013, 62: 345.

[28]

Furukawa H., Yaghi O. M. J. Am. Chem. Soc., 2009, 131: 8875.

[29]

Wang S. B., Boyjoo Y., Choueib A., Zhu Z. H. Water Res., 2005, 39: 129.

[30]

Shen D. Z., Fan J. X., Zhou W. Z., Gao B. Y., Yue Q. Y., Kang Q. J. Hazard. Mater., 2009, 172: 99.

[31]

Crini G. Bioresour. Technol., 2006, 97: 1061.

AI Summary AI Mindmap
PDF

83

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/