Synthesis and acetylcholinesterase inhibitory activity of polymethoxyflavone Mannich base derivatives

Ling Shi , Yanhua Zhang , Caifang Wang , Haoran Liu , Qiuan Wang

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (4) : 594 -597.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (4) : 594 -597. DOI: 10.1007/s40242-017-6462-x
Article

Synthesis and acetylcholinesterase inhibitory activity of polymethoxyflavone Mannich base derivatives

Author information +
History +
PDF

Abstract

A series of novel polymethoxyflavone Mannich base derivatives 1―8 was synthesized by Mannich reaction of 5-hydroxy-3,7,3′,4′-tetramethoxyflavone 9 with various secondary aliphatic amines and formaldehyde. Their acetylcholinesterase(AChE) inhibitory activities were evaluated. The results showed that most of them exhibited AChE inhibitory activity and especially piperidin-1-yl methyl substituent derivative 5(IC50=0.238 μmol/L) demonstrated stronger activity comparable with the positive control, neoeserinemethyl sulfate(IC50=1.39 μmol/L), which is worthy of further development as an agent for Alzheimer’s disease treatment.

Keywords

Polymethoxyflavone / Mannich base derivative / Acetylcholinesterase inhibitory activity

Cite this article

Download citation ▾
Ling Shi, Yanhua Zhang, Caifang Wang, Haoran Liu, Qiuan Wang. Synthesis and acetylcholinesterase inhibitory activity of polymethoxyflavone Mannich base derivatives. Chemical Research in Chinese Universities, 2017, 33(4): 594-597 DOI:10.1007/s40242-017-6462-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lee Y. H., Shin M. C., Yun Y. D., Shin S. Y., Kim J. M., Seo J. M., Kim N. J., Ryu J. H., Lee Y. S. Bioorg. Med. Chem., 2015, 23(1): 231.

[2]

Kim D. H., Hung T. M., Bae K. H., Jung J. W., Lee S., Yoon B. H., Cheong J. H., Ko K. H., Ryu H. Eur. J. Pharmacol., 2006, 542(1-3): 129.

[3]

Yuan J., Wong I. L. K., Jiang T., Wang S. W., Liu T., Wen B. J., Chow L. M. C., Sheng B. W. Eur. J. Med. Chem., 2012, 54(11): 413.

[4]

Baptista F. I., Henriques A. G., Silva A. M., Wiltfang J., da Cruz e Silva O. A. ACS Chemical Neuroscience, 2014, 5(2): 83.

[5]

Pick A., Müller H., Mayer R., Haenisch B., Pajeva I. K., Weigt M., Bönisch H., Müller C. E., Wiese M. Bioorg. Med. Chem., 2011, 19(6): 2090.

[6]

Rahim M. A., Nakajima A., Saigusa D., Tetsu N., Maruyama Y., Shibuya M., Yamakoshi H., Tomioka Y., Iwabuchi Y., Ohizumi Y., Yamakuni T. Biochemistry, 2009, 48(32): 7713.

[7]

Chen M. X., Shi L., Tang J. Q., Wang Q. A. Chem. Res. Chinese Universities, 2016, 32(5): 754.

[8]

Yang Y., Kinoshita K., Koyama K., Takahashi K., Tai T., Nunoura Y., Watanabe K. Phytomedicine, 1999, 6(2): 89.

[9]

Li S., Lo C. Y., Ho C. T. J. Agric. Food Chem., 2006, 54(12): 4176.

[10]

Zhang S. X., Ma J. G., Bao Y. M., Yang P. W., Zou L., Li K. J., Sun X. D. Bioorg. Med. Chem., 2008, 16(15): 7127.

[11]

Luo W., Su Y. B., Hong C., Tian R. G., Su L. P., Wang Y. Q., Li Y., Yue J. J., Wang C. J. Bioorg. Med. Chem., 2013, 21(23): 7275.

[12]

Liu H. R., Fan H. Q., Gao X. H., Huang X. Q., Liu X. J., Liu L. B., Zhou C., Tang J. J., Wang Q. A., Liu W. K. J. Enzyme. Inhib. Med. Chem., 2016, 31(4): 580.

[13]

Liu H. R., Huang X. Q., Lou D. H., Liu X. J., Liu W. K., Wang Q. A. Bioorg. Med. Chem. Lett., 2014, 24(19): 4749.

[14]

Peng Y. Q., Dou R. L., Song G. H., Jiang J. Synlett., 2006, 37(4): 2245.

[15]

Mohammed K., Rajae Z., Christian R. Tetrahedron Lett., 2011, 52: 4738.

[16]

Chu H. W., Wu H. T., Lee Y. J. Tetrahedron, 2004, 60(11): 2647.

[17]

Ellman G. L., Courtney K. D., Andres V. Biochem. Pharmacol., 1961, 7(2): 88.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/