Thermodynamics on sulfur migration in CaSO4 oxygen carrier reduction by CO

Simei Zhong , Min Zheng , Sixu Pu , Yanbin Xing , Kongzhai Li , Hua Wang

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (6) : 979 -985.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (6) : 979 -985. DOI: 10.1007/s40242-017-6457-7
Article

Thermodynamics on sulfur migration in CaSO4 oxygen carrier reduction by CO

Author information +
History +
PDF

Abstract

CaSO4 is an attractive oxygen carrier for chemical looping combustion(CLC) because of its high oxygen capacity and low price. The utilization of a CaSO4 oxygen carrier suffers the problems of sulfur release, and deactivation caused by sulfur loss. With respect to the fact that partial sulfur release could be recaptured and then recycled to CaSO4 by CaO sorbent, the mixture of CaSO4-CaO can be treated as an oxygen carrier. Thermodynamics of CaSO4 and CaSO4-CaO reduction by CO have been investigated in this study. The sulfur migrations, including the sulfur migration from CaSO4 to gas phase, mutual transformation of sulfur-derived gases and sulfur migration from gas phase to solid phase, were focused and elucidated. The results show that the releases of S2, S8, COS and CS2 from CaSO4 oxygen carrier are spontaneous, while SO2 can be released at high reaction temperatures above 884 °C. SO2 is the major emission source of sulfur at low CO/CaSO4 molar ratios, and COS is the major part of the byproducts as soon as the ratio exceeds 4 at 900 °C. Under CO atmosphere, all the sulfur-derived gases, SO2, S2, S8 and CS2, involved are thermodynamically favored to be converted into COS substance, and are spontaneously absorbed and solidified by CaO additive just into CaS species, which may be recycled to CaSO4 as oxygen carrier in the air reactor. But high reaction temperatures and high CO2 concentrations are adverse to sulfur capture.

Keywords

Chemical looping combustion / CO2 separation / CaSO4 oxygen carrier / Sulfur migration / Sulfur capture

Cite this article

Download citation ▾
Simei Zhong, Min Zheng, Sixu Pu, Yanbin Xing, Kongzhai Li, Hua Wang. Thermodynamics on sulfur migration in CaSO4 oxygen carrier reduction by CO. Chemical Research in Chinese Universities, 2017, 33(6): 979-985 DOI:10.1007/s40242-017-6457-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Richter H. J., Knoche K. F. Reversibility of Combustion Processes, Efficiency and Costing, 1983, Washington DC: American Chemical Society.

[2]

Lyngfelt A., Leckner B., Mattisson T. Chem. Eng. Sci., 2001, 56(10): 3101.

[3]

Adanez J., Abad A., Garcia-Labiano F., Gayan P., Luis F. d. D. Prog. Energy Combust. Sci., 2012, 38(2): 215.

[4]

Jin H., Okamoto T., Ishida M. Energy & Fuels, 1998, 12(6): 1272.

[5]

Yan C., Pan W. P. Energy & Fuels, 2006, 20(5): 1836.

[6]

Anthony E. J. Ind. Eng. Chem. Res., 2008, 47(6): 1747.

[7]

Shen L., Wu J., Xiao J., Song Q., Xiao R. Energy & Fuels, 2009, 23(5): 2498.

[8]

Kvamsdal H. M., Jordal K., Bolland O. Energy, 2007, 32(1): 10.

[9]

Qin W., Lin C. F., Cheng W. L., Xiao X. B. Chem. J. Chinese Uni-versities, 2015, 36(1): 116.

[10]

Zeng L. P., Huang F., Zhu X., Zheng M., Li K. Z. Chem. J. Chinese Universities, 2017, 38(1): 115.

[11]

Xiang W. G., Chen Y. Y. Energy & Fuels, 2007, 21(4): 2272.

[12]

Adánez J. d., Diego L. F., García-Labiano F., Gayán P., Abad A. Energy & Fuels, 2004, 18(2): 371.

[13]

García-Labiano F., Adánez J. d., Diego L. F., Gayán P. Energy & Fuels, 2006, 20(1): 26.

[14]

Cho P., Mattisson T., Lyngfelt A. Ind. Eng. Chem. Res., 2006, 45(3): 968.

[15]

Zhao H., Liu L., Wang B., Xu D., Jiang L., Zheng C. Energy & Fuels, 2008, 22(2): 898.

[16]

Källén M., Rydén M., Lyngfelt A., Mattisson T. Appl. Energ., 2015, 157: 330.

[17]

Zheng Y., Wang B. W., Song K., Zheng G. C. Eng. Thermophysics, 2016, 27(3): 531.

[18]

Shen L., Zheng M., Xiao J., Xiao R. Combustion & Flame, 2008, 154: 489.

[19]

Song Q., Xiao R., Deng Z., Zhang H., Shen L., Xiao J., Zhang M. Energ. Convers. Manage., 2008, 49(11): 3178.

[20]

Song Q., Xiao R., Deng Z., Zheng W., Shen L., Xiao J. Energy & Fuels, 2008, 22(6): 3661.

[21]

Song Q., Xiao R., Deng Z., Shen L., Xiao J., Zhang M. Ind. Eng. Chem. Res., 2008, 47(21): 8148.

[22]

Tian H., Guo Q., Yue X., Liu Y. Fuel Process Technol., 2010, 91(11): 1640.

[23]

Liu S., Lee D., Liu M., Li L., Yan R. Energy & Fuels, 2010, 24(12): 6675.

[24]

Zheng M., Shen L., Xiao J. Int. J. Greenh. Gas Con., 2010, 4(5): 716.

[25]

Xiao R., Song Q. Combust. Flame, 2011, 158(12): 2524.

[26]

Ding N., Zheng Y., Luo C., Wu Q., Fu P., Zheng C. Chem. Eng. J., 2011, 171(3): 1018.

[27]

Zheng M., Shen L., Feng X. Energ. Conver. & Manage., 2014, 83: 270.

[28]

Wang J., Anthony E. J. Appl. Energ., 2008, 85(2/3): 73.

[29]

Cheng J., Zhou J., Liu J., Zhou Z., Huang Z., Cao X., Zhao X., Cen K. Prog. Energy & Combust. Sci., 2003, 29: 381.

[30]

Anthony E. J., Granatstein D. L. Prog. Energy Combust. Sci., 2001, 27(2): 215.

[31]

Teaching and Research Group of General Chemistry, General Che-mistry 4th Ed., Higher Education Press, Beijing, 1995, 28

[32]

Mattisson T., Lyngfelt A. Energy & Fuels, 1998, 12(5): 905.

[33]

Okumura S., Mihara N., Kamiya K., Ozawa S., Maurice S. O., Kojima Y., Matsuda H. Ind. Eng. Chem. Res., 2003, 42(24): 6046.

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/