Effect of synthetic method and reductant on the morphology and photocatalytic hydrogen evolution performance of Ru nanoparticles

Chao Kong , Yanxia Han , Lijie Hou , Dongping Chen , Bowan Wu

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (5) : 816 -821.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (5) : 816 -821. DOI: 10.1007/s40242-017-6452-z
Article

Effect of synthetic method and reductant on the morphology and photocatalytic hydrogen evolution performance of Ru nanoparticles

Author information +
History +
PDF

Abstract

Ru nanoparticles were synthesized using the photoreduction and chemical reduction methods. Ru nanoparticles were used as a cocatalyst to develop a photocatalytic hydrogen evolution system sensitized by Eosin Y(EY), and the effects of the synthetic method and reductant on the morphology and photocatalytic hydrogen evolution performance of Ru nanoparticles were studied. The results indicated that Ru nanoparticles prepared by photoreduction and thermochemical reduction by ethanediol had a relatively uniform size, and the photoreduced Ru showed higher photocatalytic performance than Ru reduced by ethanediol and methanal. The amount of H2 evolution in 60 min over Ru(photoreduction)-EY was 1247.7 μmol, which was 13.6 and 14.3 times that over Ru prepared by chemical reduction methods under the same photoreaction conditions. The calculation of binding energies showed that a higher binding energy of Ru nanoparticles and glycol was one of the main reasons for the uniform size and low photocatalytic performance of Ru reduced by glycol. The results indicated that different preparation methods and reductants had a significant influence on the catalytic activity of Ru catalyst.

Keywords

Ruthenium / Photocatalysis / Hydrogen evolution / Morphology / Binding energy

Cite this article

Download citation ▾
Chao Kong, Yanxia Han, Lijie Hou, Dongping Chen, Bowan Wu. Effect of synthetic method and reductant on the morphology and photocatalytic hydrogen evolution performance of Ru nanoparticles. Chemical Research in Chinese Universities, 2017, 33(5): 816-821 DOI:10.1007/s40242-017-6452-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hornung A., Zemlyanov D., Muhler M., Ertl G. Surf. Sci., 2006, 600: 370.

[2]

Zhou X., Wu T., Hu B., Jiang T., Han B. J. Mol. Catal. A: Chem., 2009, 306: 143.

[3]

Lin W. F., Christensen P. A., Hamnett A. J. Phys. Chem. B, 2000, 104: 6642.

[4]

Chen G., Desinan S., Rosei R., Rosei F. Ma, D., Chem. Commun., 2012, 48: 8009.

[5]

Hara M., Nunoshiqe G., Takata T., Kondo J. N., Domen K. Chem. Commun., 2003, 24: 3000.

[6]

Yamada Y., Shikano S., Fukuzumi S. J. Phys. Chem. C, 2013, 117: 13143.

[7]

Koenigsmann C., Semple D. B., Sutter E., Tobierre S. E., Wong S. S. ACS Appl. Mater. Interfaces, 2013, 5: 5518.

[8]

Qadir K., Joo S. H., Mun B. S., Butcher D. R., Renzas J. R., Funda A., Liu Z., Somorjai G. A., Park J. Y. Nano Lett., 2012, 12: 5761.

[9]

Yin A. X., Liu W. C., Ke J., Zhu W., Gu J., Zhang Y. W., Yan C. H. J. Am. Chem. Soc., 2012, 134: 20479.

[10]

Viau G., Brayner R., Poul L., Chakroune N., Lacaze E., Fievet-Vincent F., Fievet F. Chem. Mater., 2003, 15: 486.

[11]

Chang X. X., Gong J. L. Acta Phys. Chim. Sin., 2016, 32: 2.

[12]

Liu X., Li Y. X., Peng S. Q., Lai H. Acta Phys. Chim. Sin., 2015, 31: 612.

[13]

Zhao S., Ren Y., Ren Y., Wang J., Yin W. J. Mol. Struc. Theochem., 2010, 955: 66.

[14]

Liu C., Zhang D., Gao M., Liu S. Chem. Res. Chinese Universities, 2015, 31(4): 597.

[15]

Zhang Y., Wang C., Zhang S., Li G. Chem. J. Chinese Universities, 2016, 37(12): 2260.

[16]

Zhang Y., Li J., Huang X. Chem. J. Chinese Universities, 2016, 37(3): 534.

[17]

Liu J., Lv C., Jin C., Guo Y., Wang G. Chem. Res. Chinese Universities, 2016, 32(2): 234.

[18]

Kong C., Li Z., Lu G. Int. J. Hydrogen Energ., 2015, 40: 5824.

[19]

Xu Y., Xu R. Appl. Surf. Sci., 2015, 351: 779.

[20]

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyata K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A.J., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomeli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J. Gaussian Inc., Wallingford CT. Gaussian 09, Revision D.01, 2009.

[21]

Cesar D. V., Santori G. F., Pompeo F., Baldanza M. A., Henriques C. A., Lombardo E., Schmal M., Cornaglia L., Nichio N. N. Int. J. Hydro. Energy, 2016, 41: 22000.

[22]

Li F., Gu Q., Niu Y., Wang R., Tong Y., Zhu S., Zhang H., Zhang Z., Wang X. Appl. Surf. Sci., 2017, 391: 251.

[23]

Zahmarkiran M., Tristany M., Philippot K., Fajerwerg K., Ozkar S., Chaudret B. Chem. Commun., 2010, 46: 2938.

[24]

Geletii Y. V., Huang Z., Hou Y., Musaev D. G., Lian T., Hill C. L. J. Am. Chem. Soc., 2009, 131: 7522.

[25]

Xu Y., Duan L., Tong L., Akermark B., Sun L. Chem. Commun., 2010, 46: 6506.

[26]

Lazarides T., McCormick T., Du P., Luo G., Lindley B., Eisenberg R. J. Am. Chem. Soc., 2009, 131: 9192.

[27]

Shimidzu T., Iyoda T., Koide Y. J. Am. Chem. Soc., 1985, 107: 35.

[28]

Cao S., Yu J. J. Photoch. Photobio. C, 2016, 27: 72.

AI Summary AI Mindmap
PDF

205

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/