Antibacterial cellulose composite membranes prepared in ionic liquid via phase inversion method

Shenghan Gao , Ruichang Gao

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (4) : 678 -683.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (4) : 678 -683. DOI: 10.1007/s40242-017-6423-4
Article

Antibacterial cellulose composite membranes prepared in ionic liquid via phase inversion method

Author information +
History +
PDF

Abstract

Antibacterial cellulose/TiO2 nanoparticles(CTM), cellulose/ZnO nanoparticles(CZM) and cellulose/chitosan(CCM) composite membranes were successfully prepared using ionic liquid(IL), 1-butyl-3-methylimidazolium chloride([BMIM]Cl), via phase inversion while [BMIM]Cl was recycled through evaporation and used to prepare cellulose membrane(CM-RILs). The pure water flux(PWF) was significantly increased via adding TiO2, ZnO and chitosan to cellulose and a perfect retention value of 67000 bovine serum albumin(BSA) was achieved in all the prepared membranes. The bacterial reduction of cellulose/TiO2 membrane, cellulose/ZnO membrane and cellulose/chitosan membrane with a blend ratio of 10:3[m(cellulose):m(additive)] was the maximum and reached 100%, 100% and 97.2% for S. aureus and 100%, 99.8% and 97.0% for E. coli, respectively. The results demonstrate that cellulose/TiO2 membrane, cellulose/ZnO membrane and cellulose/chitosan membrane can act as good antibacterial materials in water treatment, medical treatment, food industry as well as other applications.

Keywords

Cellulose / Ionic liquid / TiO2 nanoparticle / ZnO nanoparticle / Chitosan

Cite this article

Download citation ▾
Shenghan Gao, Ruichang Gao. Antibacterial cellulose composite membranes prepared in ionic liquid via phase inversion method. Chemical Research in Chinese Universities, 2017, 33(4): 678-683 DOI:10.1007/s40242-017-6423-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Nevstrueva D., Pihlajamaki A., Manttari M. Cellulose, 2015, 22: 3865.

[2]

Li X. L., Zhu L. P., Zhu B. K., Xu Y. Y. Sep. Purif. Technol., 2011, 83: 66.

[3]

Hameed N., Xiong R. Y., Salim N. V., Guo Q. P. Cellulose, 2013, 20: 2517.

[4]

Chen Y., Xiong X. P., Yang G. A., Zhang L. N., Lei S. L., Liang H. Chinese J. Polym. Sci., 2002, 20: 369.

[5]

Liebert T., Heinze T. Bioresources, 2008, 3: 576.

[6]

Zakrzewska M. E., Bogel-Lukasik E., Bogel-Lukasik R. Energ. Fuel., 2010, 24: 737.

[7]

Swatloski R. P., Spear S. K., Holbrey J. D., Rogers R. D. J. Am. Chem. Soc., 2002, 124: 4974.

[8]

Xu D. F., Cai J., Zhang L. N. Chinese J. Polym. Sci., 2016, 34: 1281.

[9]

Nevstrueva D., Pihlajamäki A., Mänttäri M. IMSTEC 2013: Interna-tional Membrane Science and Technology Conference, 2013.

[10]

El-Naggar M. E., Shaheen T. I., Zaghloul S., El-Rafie M. H., Hebeish A. Ind. Eng. Chem. Res., 2016, 55: 2661.

[11]

Tsuboi M. Journal of Polymer Science, 1957, 25: 159.

[12]

Oh S. Y., Yoo D. I., Shin Y. Carbohydrate Research, 2005, 340: 2376.

[13]

Porter A. R., Liem S. Y., Popelier P. L. A. Phys. Chem., 2008, 10: 4240.

[14]

Duchemin B. J. C., Mathew A. P., Oksman K. Composites Part A Applied Science & Manufacturing, 2009, 40: 2031.

[15]

Cao Y., Li H. Q., Zhang Y., Zhang J., He J. S. J. Appl. Polym. Sci., 2010, 116: 547.

[16]

Li Y., Su Y., Zhao X. ACS Applied Materials &Interfaces, 2014, 6: 5548.

[17]

Kadokawa J., Hirohama K., Mine S., Kato T., Yamamoto K. J. Polym. Environ., 2012, 20: 37.

[18]

Arsuaga J. M., Sotto A. d R. G. J. Membrane Sci., 2013, 428: 131.

[19]

Kamal T., Anwar Y., Khan S. B., Chani M. T. S., Asiri A. M. J. Car-bohydrate Polymer, 2016, 148: 153.

[20]

Amna T., Hassan M. S., Barakat N. A. M. Appl. Microbiol. Biot., 2012, 93: 743.

[21]

Han Y. P., Lin Q. Applied Mechanics & Materials, 2011, 138: 1202.

[22]

Janpetch N., Saito N., Rujiravanit R. Carbohydrate Polymers, 2016, 148: 335.

AI Summary AI Mindmap
PDF

159

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/