Highly efficient white organic light-emitting devices with optimized electron transporting layers

Tianyu Zhang , Yu Zheng , Chengming Wang , Yixin Zhang , Shihao Liu , Jian Ma , Letian Zhang , Wenfa Xie , Ping Chen , Jun Lin , Yujuan Liu

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (2) : 227 -230.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (2) : 227 -230. DOI: 10.1007/s40242-017-6421-6
Article

Highly efficient white organic light-emitting devices with optimized electron transporting layers

Author information +
History +
PDF

Abstract

We fabricated three phosphorescent blue organic light-emitting devices based on blue phosphor of iri-dium(III) bis[(4,6-difluorophenyl)-pyridinato-N,C2′](Firpic) with different electron transporting layer(ETL) materials. By analyzing efficiency curves and spectral characteristics, the significant effect of ETL on many aspects of device performance was demonstrated. With optimized ETL, the characteristics of devices, such as voltage and efficiency were significantly improved. Combined with a yellow phosphor of iridium(III) bis(4-phenylthieno[3,2-c]pyridinato-N,C2′) acetylacetonate(PO-01), phosphorescent white organic light-emitting devices(PhWOLEDs) were obtained. Then, with an aim to promote the performance of the PhWOLEDs, a thin layer of 4,4′,4″-tri(N-carbazolyl)-triphenylamine(TCTA) was introduced between two light emission layers, and the diffusion of excitons was confined. The outperformance device fabricated with 4,7-diphenyl-1,10-phenanthroline(Bphen) as the electron transporting layer exhibited a peak current efficiency of 36.6 cd/A, a peak power efficiency of 19.2 lm/W, and the International Commission on Illumination coordinates(0.37, 0.46).

Keywords

White organic light-emitting device / High efficiency / Optimized electron transporting layer

Cite this article

Download citation ▾
Tianyu Zhang, Yu Zheng, Chengming Wang, Yixin Zhang, Shihao Liu, Jian Ma, Letian Zhang, Wenfa Xie, Ping Chen, Jun Lin, Yujuan Liu. Highly efficient white organic light-emitting devices with optimized electron transporting layers. Chemical Research in Chinese Universities, 2017, 33(2): 227-230 DOI:10.1007/s40242-017-6421-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tang C. W., Van Slyke S. A. Appl. Phys. Lett., 1987, 51: 913.

[2]

Yu J., Yin Y. M., Xie W. F., Zhang L. T. Chem. Res. Chinese Univer-sities, 2015, 31(4): 569.

[3]

D’Andrade B. W. Nat. Photon., 2007, 1: 33.

[4]

Zhang T. Y., Li T., Hu W., Wang W. Q., Zhang L. T., Xie W. F. Curr. Appl. Phys., 2014, 14: 680.

[5]

Ma T., Yu J. S., Lou S. L., Tang X. Q., Jiang Y. D., Zhang Q. Chem. Res. Chinese Universities, 2009, 25(4): 590.

[6]

Wang X., Wang R., Zhou D. L., Yu J. S. Synth. Met., 2014, 214: 50.

[7]

Xie W. F., Liu S. Y., Zhao Y. J. Phys. D: Appl. Phys., 2003, 36: 1246.

[8]

Zhou F., Wang Q., Wu D., Cui J. Chin. Opt. Lett., 2012, 10: 022301.

[9]

Zhang T. Y., Liu M., Li T., Ma J., Liu D. L., Xie W. F., Wu C. L., Liu S. W., Ye S. C., Chen C. T. J. Phys. Chem. C, 2010, 115: 2428.

[10]

Baldo M. A., Hompson M., Forrest S. R. Nature, 2000, 403: 750.

[11]

Adachi C., Baldo M. A., Thompson M. E., Forrest S. R. J. Appl. Phys., 2001, 90: 5048.

[12]

Yoo S. J., Yun H. J., Kang I., Thangaraju K., Kwon S. K., Kim Y. H. J. Mater. Chem. C, 2013, 1: 2217.

[13]

Kang J. S., Yoon J. A., Yoo S. I., Kim J. W., Lee B. M., Yu H. H., Moon C. B., Kim W. Y. Chin. Opt. Lett., 2015, 13: 032301.

[14]

Li C. Z., Chang C. Y., Zang Y., Ju H. X., Chueh C. C., Liang P. W., Cho N., Ginger D. S., Jen A. Adv. Mater., 2014, 26: 6262.

[15]

He Z. S., Yu H. M., Peng H., Hou X. Y. Chin. Phys. B, 2015, 9: 097201.

[16]

Wang Q., Sun B., Aziz H. Adv. Funct. Mater., 2014, 24: 2975.

[17]

Zhang Y. J., Wang Q., Sun B., Aziz H. ACS. Appl. Mater. Inter., 2014, 6: 1697.

[18]

Yoo S. J., Yun H. J., Kang I., Thangaraju K., Kwon S. K., Kim Y. H. J. Mater. Chem. C, 2013, 1: 2217.

[19]

Cho J. T., Kim D. H., Koh E. I., Kim T. W. Thin Solid Films, 2014, 570: 63.

[20]

Noguchi Y., Kim H. J., Ishino R., Goushi K., Adachi C., Nakayama Y., Ishii H. Org. Electron., 2015, 17: 184.

[21]

Jou J. H., Kumar S., Agrawal A., Lia T. H., Sahoo S. J. Mater. Chem. C, 2015, 3: 2974.

[22]

Jang S. E., Joo C. W., Jeon S. O., Yook K. S., Lee J. Y. Org. Elec-tron., 2010, 11: 1059.

[23]

Su S. J., Gonmori E., Sasabe H., Kido J. Adv. Mater., 2008, 20: 4189.

[24]

Liu H., Cheng G., Hu D., Shen F., Lv Y., Sun G., Yang Y., Lu P., Ma Y. Adv. Funct. Mater., 2012, 22: 2830.

[25]

Gao C. H., Zhou D. Y., Gu W., Shi X. B., Wang Z. K., Liao L. S. Org. Electron., 2013, 14: 1177.

[26]

Lee M. T., Chu M. T., Lin J. S., Tseng M. R. J. Phys. D: Appl. Phys., 2010, 43: 442003.

[27]

Tsai Y. S., Hong L. A., Juang F. S., Chen C. Y. J. Lumin., 2014, 153: 312.

[28]

Chen P., Xie W. F., Li J., Guan T., Duan Y., Zhao Y., Liu S. Y., Ma C. S., Zhang L. Y., Li B., Tsai Y. S. Appl. Phys. Lett., 2007, 91: 023505.

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/