Studies on hydrolysis mechanism of anticancer ruthenium drug ImH[trans-Ru(Im)2Cl4] via ABEEMσπ polarizable force field combined with QM and MD-FEP

Hui Li , Huiyuan Zou , Linlin Liu , Dongxia Zhao , Zhongzhi Yang

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (2) : 239 -247.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (2) : 239 -247. DOI: 10.1007/s40242-017-6401-x
Article

Studies on hydrolysis mechanism of anticancer ruthenium drug ImH[trans-Ru(Im)2Cl4] via ABEEMσπ polarizable force field combined with QM and MD-FEP

Author information +
History +
PDF

Abstract

We used ABEEMσπ(atom-bond electronegativity equalization method) polarizable force field(ABEEMσπ PFF) method combined with QM and molecular dynamics-free energy perturbation(MD-FEP) methods to investigate the function of water molecules in hydrolysis process of ImH[trans-Ru(Im)2Cl4](ICR). The activation free energies obtained via MD-FEP calculation are in fair agreement with the experimental data. In addition, QM/MM(ABEEM) rationally describes the charge distributions and the electrostatic interaction between molecules. ABEEMσπ fluctuating charge model has the following good characteristics: (1) not only atomic charge regions but also σ, π bond and lone pair charge regions are explicitly represented for a molecule; (2) the region charges are geometry dependent and calculated from time to time in the dynamic simulation without any iterative procedure so that its performance is time-saving compared with the Drude model and induced dipole model.

Keywords

Atom-bond electronegativity equalization method(ABEEMσπ) polarizable force field / Quantum mechanics/molecular mechanics(QM/MM) / Molecular dynamics-free energy perturbation / Hydrolysis mechanism / Activation free energy

Cite this article

Download citation ▾
Hui Li, Huiyuan Zou, Linlin Liu, Dongxia Zhao, Zhongzhi Yang. Studies on hydrolysis mechanism of anticancer ruthenium drug ImH[trans-Ru(Im)2Cl4] via ABEEMσπ polarizable force field combined with QM and MD-FEP. Chemical Research in Chinese Universities, 2017, 33(2): 239-247 DOI:10.1007/s40242-017-6401-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Warshel A., Levitt M. J. Mol. Biol., 1976, 103: 227.

[2]

Singh U. C., Kollman P. A. J. Comput. Chem., 1986, 7: 718.

[3]

Field M. J., Bash P. A., Karplus M. J. Comput. Chem., 1990, 11: 700.

[4]

Bash P. A., Field M. J., Karplus M. J. Am. Chem. Soc., 1987, 109: 8092.

[5]

Cui Q., Karplus M. J. Chem. Phys., 2000, 112: 1133.

[6]

Hu H., Yang W. Annu. Rev. Phys. Chem., 2008, 59: 573.

[7]

Senn H. M., Thiel W. Angew. Chem. Int. Ed., 2009, 48: 1198.

[8]

Rao L., Cui Q., Xu X. J. Am. Chem. Soc., 2010, 132: 18092.

[9]

Ma G., Cheng N., Su H., Liu Y. Phys. Chem. Chem. Phys., 2015, 5: 7781.

[10]

Messner C. B., Bonn G. K., Hofer T. S. Phys. Chem. Chem. Phys., 2015, 11: 223.

[11]

MacKerell A. D., Bashford D., Dunbrack R. L., Evanseck J. D., Field M. J., Fischer S., Gao J., Guo H., Ha S., Joseph-McCarthy D., Kuch-nir L., Kuczera K., Lau F. T. K., Mattos C., Michnick S., Ngo T., Nguyen D. T., Prodhom B., Reiher W. E., Roux B., Schlenkrich M., Smith J. C., Stote R., Straub J., Watanabe M., Wiórkiewicz-Kuczera J., Yin D., Karplus M. J. Phys. Chem. B, 1998, 102: 3586.

[12]

Brooks B. R., Brooks C. L., Mackerell A. D., Nilsson L., Petrella R. J., Roux B., Won Y., Archontis G., Bartels C., Boresch S., Caflisch A., Caves L., Cui Q., Dinner A. R., Feig M., Fischer S., Gao J., Hodos-cek M., Im W., Kuczera K., Lazaridis T., Ma J., Ovchinnikov V., Paci E., Pastor R. W., Post C. B., Pu J. Z., Schaefer M., Tidor B., Venable R. M., Woodcock H. L., Wu X., Yang W., York D. M., Karplus M. J. Comput. Chem., 2009, 30: 1545.

[13]

van der Kamp M. W., Mulholland A. J. Biochemistry, 2013, 52: 2708.

[14]

Weiner P. K., Kollman P. A. J. Comput. Chem., 1981, 2: 287.

[15]

Case D. A., Cheatham T., Darden T., Gohlke H., Luo R., Merz K. M., Onufriev A., Simmerling C., Wang B., Woods R. J. J. Comput. Chem., 2005, 26: 1668.

[16]

Götz A. W., Clark M. A., Walker R. C. J. Comput. Chem., 2014, 35: 95.

[17]

Jorgensen W. L., Maxwell D. S., Tirado-Rives J. J. Am. Chem. Soc., 1996, 118: 11225.

[18]

McDonald N. A., Jorgensen W. L. J. Phys. Chem. B, 1998, 102: 8049.

[19]

Rizzo R. C., Jorgensen W. L. J. Am. Chem. Soc., 1999, 121: 4827.

[20]

Price M. L. P., Ostrovsky D., Jorgensen W. L. J. Comput. Chem., 2001, 22: 1340.

[21]

Allen C., McCann B. W., Acevedo O. J. Phys. Chem. B, 2015, 119: 743.

[22]

Kaminski G. A., Friesner R. A., Tirado-Rives J., Jorgensen W. L. J. Phys. Chem. B, 2001, 105: 6474.

[23]

Grossfield A., Ren P. Y., Ponder J. W. J. Am. Chem. Soc., 2003, 125: 15671.

[24]

Holt A., Karlström G. J. Comput. Chem., 2008, 29: 2033.

[25]

Kaminski G. A., Ponomarev S. Y., Liu A. B. J. Chem. Theory Com-put., 2009, 5: 2935.

[26]

Holt A., Bostrom J., Karlström G., Lindh R. J. Comput. Chem., 2010, 31: 1583.

[27]

Ponder J. W., Wu C. J., Ren P. Y., Pande V. S., Chodera J. D., Schnieders M. J., Haque I., Mobley D. L., Lambrecht D. S., DiStasio R. A., Head-Gordon M., Clark G. N. I., Johnson M. E., Head-Gordon T. J. Phys. Chem. B, 2010, 114: 2549.

[28]

Wu J. C., Piquemal J. P., Chaudret R., Reinhardt P., Ren P. Y. J. Chem. Theory Comput., 2010, 6: 2059.

[29]

Yan T. Y., Wang Y. T., Knox C. J. Phys. Chem. B, 2010, 114: 6905.

[30]

Ren P. Y., Wu C., Ponder J. W. J. Chem. Theory Comput., 2011, 7: 3143.

[31]

Lamoureux G., MacKerell A. D., Roux B. J. Chem. Phys., 2003, 119: 5185.

[32]

Lopes P. E. M., Lamoureux G., Mackerell A. D. J. Comput. Chem., 2009, 30: 1821.

[33]

Baker C. M., Anisimov V. M., MacKerell A. D. J. Phys. Chem. B, 2011, 115: 580.

[34]

Orabi E. A., Lamoureux G. J. Chem. Theory Comput., 2012, 8: 182.

[35]

Yu H. B., Whitfield T. W., Harder E., Lamoureux G., Vorobyov I., Anisimov V. M., MacKerell A. D., Roux B. J. Chem. Theory Com-put., 2010, 6: 774.

[36]

Patel D. S., He X., MacKerell A. D. Jr. J. Phys. Chem. B, 2014, 119: 637.

[37]

Rick S. W., Stuart S. J., Berne B. J. J. Chem. Phys., 1994, 101: 6141.

[38]

Banks J. L., Kaminski G. A., Zhou R. H., Mainz D. T., Berne B. J., Friesner R. A. J. Chem. Phys., 1999, 110: 741.

[39]

Chelli R., Procacci P. J. Chem. Phys., 2002, 117: 9175.

[40]

Patel S., Brooks C. L. J. Comput. Chem., 2004, 25: 1.

[41]

Patel S., Brooks C. L. Mol. Simulat., 2006, 32: 231.

[42]

Patel S., Davis J. E., Bauer B. A. J. Am. Chem. Soc., 2009, 131: 13890.

[43]

Bauer B. A., Patel S. Theor. Chem. Acc., 2012, 131: 1153.

[44]

Cazade P. A., Hédin F., Xu Z. H., Meuwly M. J. Phys. Chem. B, 2015, 119: 3112.

[45]

Pater S., Mackerell A. D. Jr., Brooks C. L. J. Comput. Chem., 2004, 25: 1504.

[46]

Zou H. Y., Zhao D. X., Yang Z. Z. Acta Chim. Sinica, 2013, 71: 1547.

[47]

Yang Z. Z., Wang C. S. J. Phys. Chem. A, 1997, 101: 6315.

[48]

Wang C. S., Yang Z. Z. J. Chem. Phys., 1999, 110: 6189.

[49]

Cong Y., Yang Z. Z. Chem. Phys. Lett., 2000, 316: 324.

[50]

Yang Z. Z., Wang C. S. J. Theor. Comput. Chem., 2003, 2: 273.

[51]

Yang Z. Z., Cui B. Q. J. Chem. Theory Comput., 2007, 3: 1561.

[52]

Mortier W. J., Ghosh S. K., Shankar S. J. Am. Chem. Soc., 1986, 108: 4315.

[53]

Geerlings P., Proft F. D., Langenaeker W. Chem. Rev., 2003, 103: 1793.

[54]

Yang Z. Z., Wu Y., Zhao D. X. J. Chem. Phys., 2004, 120: 2541.

[55]

Zhao D. X., Liu C., Wang F. F., Yu C. Y., Gong L. D., Liu S. B., Yang Z. Z. J. Chem. Theory Comput., 2010, 6: 795.

[56]

Wu Y., Yang Z. Z. J. Phys. Chem. A, 2004, 108: 7563.

[57]

Li X., Yang Z. Z. J. Phys. Chem. A, 2005, 109: 4102.

[58]

Wang F. F., Zhao D. X., Gong L. D. Theor. Chem. Acc., 2009, 124: 139.

[59]

Liu L. L., Yang Z. Z. Chem. J. Chinese Universities, 2015, 36(11): 2179.

[60]

Chen S. L., Zhao D. X., Yang Z. Z. J. Comput. Chem., 2011, 32: 338.

[61]

Zhao D. X., Yu L., Gong L. D., Liu C., Yang Z. Z. J. Chem. Phys., 2011, 134: 194114.

[62]

Xu S., Zhao D. X., Gong L. D., Liu C., Yang Z. Z. Chem. Phys. Lett., 2015, 618: 147.

[63]

Lu L. N., Liu C., Gong L. D. Chem. Res. Chinese Universities, 2013, 29(2): 344.

[64]

Gong L. D. Sci. China Chem., 2012, 55: 2471.

[65]

Dhubhghaill O. M. N., Hagen W. R., Keppler B. K., Lipponer K., Sadler P. J. Dalton Trans., 1994, 3305.

[66]

Anderson C., Beauchamp A. L. Can. J. Chem., 1995, 73: 471.

[67]

Kapitza S., Pongratz M., Jakupec M. A., Heffeter P., Berger W., Lackinger L., Keppler B. K., Marian B. J. Cancer Res. Clin. Oncol., 2005, 131: 101.

[68]

Ravera M., Cassino C., Baracco S., Osella D. Eur. J. Inorg. Chem. Phys., 2006, 4: 740.

[69]

Chen J., Chen L., Liao S., Zheng K., Ji L. Dalton Trans., 2007, 3507.

[70]

Vargiu A. V., Robertazzi A., Magistrato A., Ruggerone P., Carloni P. J. Phys. Chem. B, 2008, 112: 4401.

[71]

Gao J. Acc. Chem. Res., 1996, 29: 298.

[72]

Lipkowitz K. B., Boyd D. B., Gao J. Rev. Comput. Chem., 1996, 7: 119.

[73]

Ishida T., Kato S. J. Am. Chem. Soc., 2003, 125: 12035.

[74]

Yang Z. Z., Wang J. J., Zhao D. X. J. Comput. Chem., 2014, 35: 1690.

[75]

Yang Z. Z., Shen E. Z. J. Mol. Struct.(Theochem.), 1994, 312: 167.

[76]

Sava G., Bergamo A., Zorzet S., Gava B., Casarsa C., Cocchietto M., Furlani A., Scarcia V., Serli B., Iengo E., Alessio E., Mestroni G. Eur. J. Cancer, 2002, 38: 427.

[77]

Ioachim E., Medlycott E. A., Skene W. G., Hanan G. S. Polyhedron, 2007, 26: 4929.

[78]

Sahin C., Tozlu C., Ocakoglu K., Zafer C., Varlikli C., Icli S. Inorg. Chim. Acta, 2008, 361: 671.

[79]

Derouane E. G., Fripiat J. G., Ballmoos R. V. J. Phys. Chem., 1990, 94: 1687.

[80]

Wilson M. S., Ichikawa S. J. Phys. Chem., 1989, 93: 3087.

[81]

Torrent-Sucarrat M., Proft F. D., Geerlings P., Ayers P. W. Chem. Eur. J., 2008, 14: 8652.

[82]

Husinaka S., Sakai Y., Miyoshi E., Narita S. J. Chem. Phys., 1990, 93: 3319.

[83]

Jakalian A., Bush B. L., Jack D. B., Bayly C. I. J. Comput. Chem., 2000, 21: 132.

[84]

Kirkwood J. G. J. Chem. Phys., 1935, 3: 300.

[85]

Zwanzig R. W. J. Chem. Phys., 1954, 22: 1420.

[86]

Torrie G. M., Valleau J. P. Chem. Phys. Lett., 1974, 28: 578.

[87]

Kollman P. Chem. Rev., 1993, 93: 2395.

[88]

Jorgensen W. L., Thomas L. L. J. Chem. Theory Comput., 2008, 4: 869.

[89]

Lee C., Yang W., Parr R. G. Phys. Rev. B, 1988, 37: 785.

[90]

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A. Jr., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Na-katsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dap-prich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Ra-buck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., Pople J. A. Gaussian 03, 2004, Wallingford CT: Gaussian Inc..

[91]

Hay P. J., Wadt W. R. J. Chem. Phys., 1985, 82: 270.

[92]

Hay P. J., Wadt W. R. J. Chem. Phys., 1985, 82: 299.

[93]

Wadt W. R., Hay P. J. J. Chem. Phys., 1985, 82: 284.

[94]

Ditchfield R., Hehre W. J., Pople J. A. J. Chem. Phys., 1971, 54: 724.

[95]

Hehre W. J., Ditchfield R., Pople J. A. J. Chem. Phys., 1972, 56: 2257.

[96]

Gonzalez C., Schlegel H. B. J. Chem. Phys., 1989, 90: 2154.

[97]

Gonzalez C., Schlegel H. B. J. Phys. Chem., 1990, 94: 5523.

[98]

Mennucci B., Cances E., Tomasi J. J. Phys. Chem. B, 1997, 101: 10506.

[99]

Mennucci B., Tomasi J. J. Chem. Phys., 1997, 106: 5151.

[100]

Tomasi J., Mennucci B., Cances E. J. Mol. Struct.(Theochem.), 1999, 464: 211.

[101]

Jorgensen W. L., Ravimohan C. J. Chem. Phys., 1985, 83: 3050.

[102]

Chatlas J., van Eldik R., Keppler B. K. Inorg. Chim. Acta, 1995, 233: 59.

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/