Structure of solution of colloid and hydrogen bonding fluid near a semipermeable membrane

Meng Zhao , Hanfei Chen , Fang Gu , Haijun Wang

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (2) : 248 -254.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (2) : 248 -254. DOI: 10.1007/s40242-017-6398-1
Article

Structure of solution of colloid and hydrogen bonding fluid near a semipermeable membrane

Author information +
History +
PDF

Abstract

The local fluid structure of a solution consisting of colloid particles and hydrogen bonding(HB) fluid se-parated from pure solvent by a semipermeable membrane was investigated, where the colloid particles and HB fluid serve as solute and solvent, respectively. In this paper, the semipermeable membrane allows the passage of solvent molecules but not solute particles, and therefore, it provides a nano-confinement for colloid particles. The density profiles of the two species near the semipermeable membrane were determined via density functional theory(DFT) for classical fluids. Based on the predicted density profiles under various conditions, the effects of HB strength, func-tionality, total bulk density, density fraction and the size ratio of two species on the fluid structure were discussed. As an application, the osmotic pressures of the system were also presented. It is shown that the local structure and osmotic pressure can be efficiently regulated by these factors due to the competition between the excluded volume interactions and the HB interaction. The present results are expected to be helpful to study the osmotic phenomena and relevant problems on the nanoscale.

Keywords

Hydrogen bonding fluid / Semipermeable membrane / Osmotic pressure / Density functional theory

Cite this article

Download citation ▾
Meng Zhao, Hanfei Chen, Fang Gu, Haijun Wang. Structure of solution of colloid and hydrogen bonding fluid near a semipermeable membrane. Chemical Research in Chinese Universities, 2017, 33(2): 248-254 DOI:10.1007/s40242-017-6398-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bryk P., Pizio O., Sokolowski S. Mol. Phys., 1998, 95(2): 311.

[2]

Patrykiejew A., Sokolowski S., Ilnyskyi J., Sokolowska Z. J. Chem. Phys., 2010, 132(24): 244704.

[3]

Borowko M., Patrykiejew A., Rzysko W., Sokolowski S., Ilnytskyi J. J. Chem. Phys., 2011, 134(4): 44705.

[4]

Hiemenz P. C., Rajagopalan R. Principles of Colloid and Surface Chemistry, 1997, New York: Marcel Dekker, 206.

[5]

Benedek G. B., Villars F. M. H. Physics with Illustrative Examples from Medicine and Biology, 2000, New York: Springer-Verlag, 212.

[6]

Bryk P. Langmuir, 2006, 22(7): 3214.

[7]

Wu J. Z. AIChE. J., 2006, 52(3): 521169.

[8]

Wu J. Z., Li Z. D. Annu. Rev. Phys. Chem., 2007, 58: 85.

[9]

You F. Q., Yu Y. X., Gao G. H. J. Chem. Phys., 2005, 123(11): 114705.

[10]

Keshavarzi E., Helmi A. J. Phys. Chem. B, 2014, 118(17): 4582.

[11]

Wang Y. Y., Cui J., Han Y. Y., Jiang W., Sun Y. C. Chem. J. Chinese Universities, 2016, 37(5): 1010.

[12]

Powles J. G., Murad S., Ravi P. V. Chem. Phys. Lett., 1992, 188(1/2): 21.

[13]

Zhou Y. Q., Stell G. J. Chem. Phys., 1988, 89(11): 7010.

[14]

Zhou Y. Q., Stell G. J. Chem. Phys., 1988, 89(11): 7020.

[15]

Bryk P., Cyrankiewicz W., Wko M. B., Sokoeowski S. Mol. Phys., 1998, 93(1): 111.

[16]

Borowko M., Bryk P., Pizio O., Sokolowski S. Mol. Phys., 1998, 94(5): 867.

[17]

Bryk P., Sokolowski S., Pizio O. J. Phys. Chem. B, 1999, 103(17): 3366.

[18]

Yang Z., Yang X. N., Xu Z. J. J. Mem. Sci., 2008, 320(1/2): 381.

[19]

Li Z. D., Wu J. Z., Wang Z. G. Biophys. J., 2008, 94(3): 737.

[20]

Evans R. Adv. Phys., 1979, 28(2): 143.

[21]

Ramakrishnan T. V., Yussouff M. Phys. Rev. B, 1979, 19(5): 2775.

[22]

Panayiotout C., Sanchez I. C. J. Phys. Chem., 1991, 95(24): 10090.

[23]

Jeffrey G. A. An Introduction to Hydrogen Bonding, 1997, Oxford: Oxford University Press, 135.

[24]

Murad S., Powles J. G. Computational Methods in Colloid and Surface Science, 2000, New York: Marcel Dekker, 775.

[25]

Freifelder D. M. Principles of Physical Chemistry, with Applications to the Biological Sciences, 1985, California: Jones and Bartlett Publishers, 106.

[26]

Rosenfeld Y. Phys. Rev. Lett., 1989, 63(9): 980.

[27]

Roth R., Evans R., Lang A., Kahl G. J. Phys.: Condens. Matter, 2002, 14(46): 12063.

[28]

Yu Y. X., Wu J. Z. J. Chem. Phys., 2002, 117(22): 10156.

[29]

Wang H. J., Hong X. Z., Gu F., Ba X. W. Sci. China Chem., 2006, 49(6): 499.

[30]

Gu F., Wang H. J., Li J. T. Sci. China Chem., 2012, 55(6): 1160.

[31]

Liu X. Y., Li J. T., Gu F., Wang H. J. Chin. J. Chem. Phys., 2015, 28(3): 288.

[32]

Yu Y. X., Wu J. Z. J. Chem. Phys., 2002, 116(16): 7094.

[33]

Yu Y. X., Wu J. Z., Xin Y. X., Gao G. H. J. Chem. Phys., 2004, 121(3): 1535.

[34]

Wang H. J., Hong X. Z., Gu F., Ba X. W. Sci. China Chem., 2007, 50(1): 11.

[35]

Gu F., Wang H. J., Li J. T. Sci. China Chem., 2012, 55(6): 1160.

[36]

You F. Q., Yu Y. X., Gao G. H. J. Phys. Chem. B, 2005, 109(8): 3512.

[37]

Daoud M., Williams C. E. Soft Matter Physics, 1999, Berlin Heidelberg: Springer, 87.

AI Summary AI Mindmap
PDF

147

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/